Become an Insider

Sign up today to receive premium content.

Home

How Technology Can Help Solve Education’s Stickiest Problems

Ryan Petersen

As Editor in Chief, Ryan works on developing editorial strategy and is always on the lookout for new writing talent and sharing great stories with the IT world. In his spare time, Ryan enjoys spending time with his family, biking and obsessively following Iowa Hawkeye sports and Cubs baseball.

Before K–12 students even step onto school grounds, they are supported by an invisible matrix of technologies that make learning possible . As they navigate the school day, those technologies continue to work on their behalf to seamlessly usher them from one experience to the next. But take away one or more of these tools, and teachers, school resource officers and even administrators would have a more difficult time supporting the student population.

Click the banner to unlock complimentary resources from CDW for your modern K–12 classroom.

What are the tools that undergird essential systems inside and outside of the classroom? And how are schools using them to solve their stickiest problems ?

Check out the stories below from the Fall 2023 issue of the magazine. For a preview of what’s inside this issue, watch this short video with Taashi Rowe, managing editor for  EdTech: Focus on K–12 .

READ KEY PIECES FROM THIS ISSUE:

These K–12 Schools Are Using Asset-Tracking Technology To Save Money and Reduce Risk

From the Bus to the Wilderness: How Hyperconnected Schools Expand Learning Opportunities

K–12 Schools Share Their Journeys to Freedom, Connection With Wi-Fi 6

As School Safety Concerns Grow, What Role Can Modern Cameras Play?

How Schools Make Sure Dead Devices Don’t Tank Learning

how can technology solve problems with education

  • Digital Transformation

Related Articles

Blind student using braille technology

Freshen Up Your Customer Experience Strategy

Copyright © 2024 CDW LLC 200 N. Milwaukee Avenue , Vernon Hills, IL 60061 Do Not Sell My Personal Information

Asian Development Bank

Asian Development Blog Straight Talk from Development Experts


|


|

|
|


|


|

|



|




|


|

















|

Education is in Crisis: How Can Technology be Part of the Solution?

 There is an emerging revolution in learning brought on by digital technologies. Photo: ADB

By Paul Vandenberg , Kirsty Newman , Milan Thomas

Digital technologies and EdTech could play a role in addressing the learning crisis underway in Asia and the Pacific.

A learning crisis affects many developing countries in Asia. Millions of children attend school but are not learning enough. They cannot read, write, or do mathematics at their grade level, and yet they pass to the next grade, learning even less because they have not grasped the previous material. The magnitude of the crisis is staggering: in low- and middle-income countries more than half of children are not learning to read by age 10.

At the same time, there is an emerging revolution in learning brought on by digital technologies . These are collectively referred to as educational technology or EdTech . The coincident emergence of a problem in education and a new approach to learning naturally makes us ask how one may be a solution for the other.

Edtech may be one part of the solution – but it should be a means not an end. Our guiding principle should be to first diagnose what is going wrong in a system and then identify which solutions are best suited to solve those problems.

Some causes of the learning crisis are well understood. The poor quality of teaching is a key factor. Teachers often lack subject knowledge and have not had adequate training. There are ways in which technology could address this – and so EdTech may be equally valuable in teaching teachers as it is in teaching students. By offering distance learning, EdTech can provide in-service training or combine online and in-person training (blended learning).

There is also evidence that teachers need better incentives. The idea is that that they can teach well but are not motivated to do so. It is not clear how EdTech can address this problem. Digitized school management systems could better track teacher performance (by tracking their students’ performance) and then linking to pay or other incentives. However, the main need is to design the incentive system; digital applications may only make that system more efficient.    

Computer-assisted learning is the direct means by which EdTech can help students. It can be seen as a partial solution for two fundamental learning crisis problems: addressing students at different learning levels and completing the syllabus. A classroom contains students with a range of baseline learning levels and teachers are often incentivized to teach to the upper stratum, leaving many students behind. Furthermore, teachers are pressured to cover the syllabus by year’s end. They move on to new material even if students have not mastered previous lessons. This also leaves students behind.

The solution to both problems is, of course, more tailored teaching, but a teacher is hard-pressed to provide one-on-one tutoring to 30 or 40 kids. EdTech might help provide one-to-one instruction (e.g., one student to one tablet) so pupils can learn at their own level and pace. The evidence from rigorous assessments (largely in the United States) is that packages that use artificial intelligence to adjust to a student’s level can improve results, especially in math.

However, we need to be cautious. Most of the evidence comes from contexts in which the quality of teaching is already quite good and is much above the average in developing countries. Digital systems can also help increase the efficiency of formative assessment and make it more likely that such assessment will be conducted. Tracking of students’ learning, through data collection and analysis, can help to better monitor a student’s learning level and provide level-appropriate teaching and remediation.     

Computer-assisted learning is the direct means by which EdTech can help students.

Edtech software, introduced in conjunction with other reforms, holds some promise. One notable success is Mindspark in India , which improves math and Hindi learning. It has been evaluated as an after-hours supplement and combined with human teaching assistance. More assessments of programs would be helpful.

There is also evidence that low-tech interventions for “teaching at the right level" can also have large impacts on learning. Careful analysis is needed to determine whether high-tech or low-tech solutions are best, given that low tech is less costly, and finance is a constraint in poor countries.

The COVID-19 pandemic has given a big push to EdTech. We can learn from these experiences but need to keep them in context. EdTech is being used to overcome the need to social distance. Teachers are teaching by video but not necessarily teaching better than when standing in front of a classroom. Zoom fatigue is a problem. More mass open online courses are being offered and are being taken up – but much of this is not for basic education and therefore does not address the learning crisis. 

Supporting EdTech solutions comes with four caveats. First, new initiatives need to be well-designed to address specific weaknesses. Low-quality teacher training delivered partially online is no better than low-quality in-person training. The same applies to computer-assisted learning.

Second, computer-assisted learning is often used in schools or in after-hours programs at or near schools.  Delivering as distance learning is trickier. It requires hardware and connectivity at home, which is not available to children in low-income households in developing countries and even developed ones.

Third, EdTech programs used outside normal classroom hours adds to the time children spend learning. This is good but it is not always clear whether the benefits are coming from EdTech, per se, or simply more time spent learning. Nonetheless, gamification and other techniques may make children want to spend more time learning. 

Finally, let us keep in mind that good learning outcomes can be achieved without EdTech. Developed countries got results before the advent of EdTech. So too did good schools in developing countries.

To be effective, EdTech must address key causes of the crisis and be part of a larger package of reforms. Those reforms include teacher training, incentives, monitoring, teaching at the right level, remediation for underperforming students, and others. 

Digital technologies have changed our lives in many ways, mostly for the good. EdTech could do the same by playing a role in addressing the learning crisis.

Published: 23 July 2021

Subscribe to our Newsletter

Never miss a blog post. Get updates on development in Asia and the Pacific into your mailbox.

Straight Talk in Your Inbox

Adb blog team, browse adb.org, other adb sites.

ADB encourages websites and blogs to link to its web pages.

REALIZING THE PROMISE:

Leading up to the 75th anniversary of the UN General Assembly, this “Realizing the promise: How can education technology improve learning for all?” publication kicks off the Center for Universal Education’s first playbook in a series to help improve education around the world.

It is intended as an evidence-based tool for ministries of education, particularly in low- and middle-income countries, to adopt and more successfully invest in education technology.

While there is no single education initiative that will achieve the same results everywhere—as school systems differ in learners and educators, as well as in the availability and quality of materials and technologies—an important first step is understanding how technology is used given specific local contexts and needs.

The surveys in this playbook are designed to be adapted to collect this information from educators, learners, and school leaders and guide decisionmakers in expanding the use of technology.  

Introduction

While technology has disrupted most sectors of the economy and changed how we communicate, access information, work, and even play, its impact on schools, teaching, and learning has been much more limited. We believe that this limited impact is primarily due to technology being been used to replace analog tools, without much consideration given to playing to technology’s comparative advantages. These comparative advantages, relative to traditional “chalk-and-talk” classroom instruction, include helping to scale up standardized instruction, facilitate differentiated instruction, expand opportunities for practice, and increase student engagement. When schools use technology to enhance the work of educators and to improve the quality and quantity of educational content, learners will thrive.

Further, COVID-19 has laid bare that, in today’s environment where pandemics and the effects of climate change are likely to occur, schools cannot always provide in-person education—making the case for investing in education technology.

Here we argue for a simple yet surprisingly rare approach to education technology that seeks to:

  • Understand the needs, infrastructure, and capacity of a school system—the diagnosis;
  • Survey the best available evidence on interventions that match those conditions—the evidence; and
  • Closely monitor the results of innovations before they are scaled up—the prognosis.

RELATED CONTENT

how can technology solve problems with education

Podcast: How education technology can improve learning for all students

how can technology solve problems with education

To make ed tech work, set clear goals, review the evidence, and pilot before you scale

The framework.

Our approach builds on a simple yet intuitive theoretical framework created two decades ago by two of the most prominent education researchers in the United States, David K. Cohen and Deborah Loewenberg Ball. They argue that what matters most to improve learning is the interactions among educators and learners around educational materials. We believe that the failed school-improvement efforts in the U.S. that motivated Cohen and Ball’s framework resemble the ed-tech reforms in much of the developing world to date in the lack of clarity improving the interactions between educators, learners, and the educational material. We build on their framework by adding parents as key agents that mediate the relationships between learners and educators and the material (Figure 1).

Figure 1: The instructional core

Adapted from Cohen and Ball (1999)

As the figure above suggests, ed-tech interventions can affect the instructional core in a myriad of ways. Yet, just because technology can do something, it does not mean it should. School systems in developing countries differ along many dimensions and each system is likely to have different needs for ed-tech interventions, as well as different infrastructure and capacity to enact such interventions.

The diagnosis:

How can school systems assess their needs and preparedness.

A useful first step for any school system to determine whether it should invest in education technology is to diagnose its:

  • Specific needs to improve student learning (e.g., raising the average level of achievement, remediating gaps among low performers, and challenging high performers to develop higher-order skills);
  • Infrastructure to adopt technology-enabled solutions (e.g., electricity connection, availability of space and outlets, stock of computers, and Internet connectivity at school and at learners’ homes); and
  • Capacity to integrate technology in the instructional process (e.g., learners’ and educators’ level of familiarity and comfort with hardware and software, their beliefs about the level of usefulness of technology for learning purposes, and their current uses of such technology).

Before engaging in any new data collection exercise, school systems should take full advantage of existing administrative data that could shed light on these three main questions. This could be in the form of internal evaluations but also international learner assessments, such as the Program for International Student Assessment (PISA), the Trends in International Mathematics and Science Study (TIMSS), and/or the Progress in International Literacy Study (PIRLS), and the Teaching and Learning International Study (TALIS). But if school systems lack information on their preparedness for ed-tech reforms or if they seek to complement existing data with a richer set of indicators, we developed a set of surveys for learners, educators, and school leaders. Download the full report to see how we map out the main aspects covered by these surveys, in hopes of highlighting how they could be used to inform decisions around the adoption of ed-tech interventions.

The evidence:

How can school systems identify promising ed-tech interventions.

There is no single “ed-tech” initiative that will achieve the same results everywhere, simply because school systems differ in learners and educators, as well as in the availability and quality of materials and technologies. Instead, to realize the potential of education technology to accelerate student learning, decisionmakers should focus on four potential uses of technology that play to its comparative advantages and complement the work of educators to accelerate student learning (Figure 2). These comparative advantages include:

  • Scaling up quality instruction, such as through prerecorded quality lessons.
  • Facilitating differentiated instruction, through, for example, computer-adaptive learning and live one-on-one tutoring.
  • Expanding opportunities to practice.
  • Increasing learner engagement through videos and games.

Figure 2: Comparative advantages of technology

Here we review the evidence on ed-tech interventions from 37 studies in 20 countries*, organizing them by comparative advantage. It’s important to note that ours is not the only way to classify these interventions (e.g., video tutorials could be considered as a strategy to scale up instruction or increase learner engagement), but we believe it may be useful to highlight the needs that they could address and why technology is well positioned to do so.

When discussing specific studies, we report the magnitude of the effects of interventions using standard deviations (SDs). SDs are a widely used metric in research to express the effect of a program or policy with respect to a business-as-usual condition (e.g., test scores). There are several ways to make sense of them. One is to categorize the magnitude of the effects based on the results of impact evaluations. In developing countries, effects below 0.1 SDs are considered to be small, effects between 0.1 and 0.2 SDs are medium, and those above 0.2 SDs are large (for reviews that estimate the average effect of groups of interventions, called “meta analyses,” see e.g., Conn, 2017; Kremer, Brannen, & Glennerster, 2013; McEwan, 2014; Snilstveit et al., 2015; Evans & Yuan, 2020.)

*In surveying the evidence, we began by compiling studies from prior general and ed-tech specific evidence reviews that some of us have written and from ed-tech reviews conducted by others. Then, we tracked the studies cited by the ones we had previously read and reviewed those, as well. In identifying studies for inclusion, we focused on experimental and quasi-experimental evaluations of education technology interventions from pre-school to secondary school in low- and middle-income countries that were released between 2000 and 2020. We only included interventions that sought to improve student learning directly (i.e., students’ interaction with the material), as opposed to interventions that have impacted achievement indirectly, by reducing teacher absence or increasing parental engagement. This process yielded 37 studies in 20 countries (see the full list of studies in Appendix B).

Scaling up standardized instruction

One of the ways in which technology may improve the quality of education is through its capacity to deliver standardized quality content at scale. This feature of technology may be particularly useful in three types of settings: (a) those in “hard-to-staff” schools (i.e., schools that struggle to recruit educators with the requisite training and experience—typically, in rural and/or remote areas) (see, e.g., Urquiola & Vegas, 2005); (b) those in which many educators are frequently absent from school (e.g., Chaudhury, Hammer, Kremer, Muralidharan, & Rogers, 2006; Muralidharan, Das, Holla, & Mohpal, 2017); and/or (c) those in which educators have low levels of pedagogical and subject matter expertise (e.g., Bietenbeck, Piopiunik, & Wiederhold, 2018; Bold et al., 2017; Metzler & Woessmann, 2012; Santibañez, 2006) and do not have opportunities to observe and receive feedback (e.g., Bruns, Costa, & Cunha, 2018; Cilliers, Fleisch, Prinsloo, & Taylor, 2018). Technology could address this problem by: (a) disseminating lessons delivered by qualified educators to a large number of learners (e.g., through prerecorded or live lessons); (b) enabling distance education (e.g., for learners in remote areas and/or during periods of school closures); and (c) distributing hardware preloaded with educational materials.

Prerecorded lessons

Technology seems to be well placed to amplify the impact of effective educators by disseminating their lessons. Evidence on the impact of prerecorded lessons is encouraging, but not conclusive. Some initiatives that have used short instructional videos to complement regular instruction, in conjunction with other learning materials, have raised student learning on independent assessments. For example, Beg et al. (2020) evaluated an initiative in Punjab, Pakistan in which grade 8 classrooms received an intervention that included short videos to substitute live instruction, quizzes for learners to practice the material from every lesson, tablets for educators to learn the material and follow the lesson, and LED screens to project the videos onto a classroom screen. After six months, the intervention improved the performance of learners on independent tests of math and science by 0.19 and 0.24 SDs, respectively but had no discernible effect on the math and science section of Punjab’s high-stakes exams.

One study suggests that approaches that are far less technologically sophisticated can also improve learning outcomes—especially, if the business-as-usual instruction is of low quality. For example, Naslund-Hadley, Parker, and Hernandez-Agramonte (2014) evaluated a preschool math program in Cordillera, Paraguay that used audio segments and written materials four days per week for an hour per day during the school day. After five months, the intervention improved math scores by 0.16 SDs, narrowing gaps between low- and high-achieving learners, and between those with and without educators with formal training in early childhood education.

Yet, the integration of prerecorded material into regular instruction has not always been successful. For example, de Barros (2020) evaluated an intervention that combined instructional videos for math and science with infrastructure upgrades (e.g., two “smart” classrooms, two TVs, and two tablets), printed workbooks for students, and in-service training for educators of learners in grades 9 and 10 in Haryana, India (all materials were mapped onto the official curriculum). After 11 months, the intervention negatively impacted math achievement (by 0.08 SDs) and had no effect on science (with respect to business as usual classes). It reduced the share of lesson time that educators devoted to instruction and negatively impacted an index of instructional quality. Likewise, Seo (2017) evaluated several combinations of infrastructure (solar lights and TVs) and prerecorded videos (in English and/or bilingual) for grade 11 students in northern Tanzania and found that none of the variants improved student learning, even when the videos were used. The study reports effects from the infrastructure component across variants, but as others have noted (Muralidharan, Romero, & Wüthrich, 2019), this approach to estimating impact is problematic.

A very similar intervention delivered after school hours, however, had sizeable effects on learners’ basic skills. Chiplunkar, Dhar, and Nagesh (2020) evaluated an initiative in Chennai (the capital city of the state of Tamil Nadu, India) delivered by the same organization as above that combined short videos that explained key concepts in math and science with worksheets, facilitator-led instruction, small groups for peer-to-peer learning, and occasional career counseling and guidance for grade 9 students. These lessons took place after school for one hour, five times a week. After 10 months, it had large effects on learners’ achievement as measured by tests of basic skills in math and reading, but no effect on a standardized high-stakes test in grade 10 or socio-emotional skills (e.g., teamwork, decisionmaking, and communication).

Drawing general lessons from this body of research is challenging for at least two reasons. First, all of the studies above have evaluated the impact of prerecorded lessons combined with several other components (e.g., hardware, print materials, or other activities). Therefore, it is possible that the effects found are due to these additional components, rather than to the recordings themselves, or to the interaction between the two (see Muralidharan, 2017 for a discussion of the challenges of interpreting “bundled” interventions). Second, while these studies evaluate some type of prerecorded lessons, none examines the content of such lessons. Thus, it seems entirely plausible that the direction and magnitude of the effects depends largely on the quality of the recordings (e.g., the expertise of the educator recording it, the amount of preparation that went into planning the recording, and its alignment with best teaching practices).

These studies also raise three important questions worth exploring in future research. One of them is why none of the interventions discussed above had effects on high-stakes exams, even if their materials are typically mapped onto the official curriculum. It is possible that the official curricula are simply too challenging for learners in these settings, who are several grade levels behind expectations and who often need to reinforce basic skills (see Pritchett & Beatty, 2015). Another question is whether these interventions have long-term effects on teaching practices. It seems plausible that, if these interventions are deployed in contexts with low teaching quality, educators may learn something from watching the videos or listening to the recordings with learners. Yet another question is whether these interventions make it easier for schools to deliver instruction to learners whose native language is other than the official medium of instruction.

Distance education

Technology can also allow learners living in remote areas to access education. The evidence on these initiatives is encouraging. For example, Johnston and Ksoll (2017) evaluated a program that broadcasted live instruction via satellite to rural primary school students in the Volta and Greater Accra regions of Ghana. For this purpose, the program also equipped classrooms with the technology needed to connect to a studio in Accra, including solar panels, a satellite modem, a projector, a webcam, microphones, and a computer with interactive software. After two years, the intervention improved the numeracy scores of students in grades 2 through 4, and some foundational literacy tasks, but it had no effect on attendance or classroom time devoted to instruction, as captured by school visits. The authors interpreted these results as suggesting that the gains in achievement may be due to improving the quality of instruction that children received (as opposed to increased instructional time). Naik, Chitre, Bhalla, and Rajan (2019) evaluated a similar program in the Indian state of Karnataka and also found positive effects on learning outcomes, but it is not clear whether those effects are due to the program or due to differences in the groups of students they compared to estimate the impact of the initiative.

In one context (Mexico), this type of distance education had positive long-term effects. Navarro-Sola (2019) took advantage of the staggered rollout of the telesecundarias (i.e., middle schools with lessons broadcasted through satellite TV) in 1968 to estimate its impact. The policy had short-term effects on students’ enrollment in school: For every telesecundaria per 50 children, 10 students enrolled in middle school and two pursued further education. It also had a long-term influence on the educational and employment trajectory of its graduates. Each additional year of education induced by the policy increased average income by nearly 18 percent. This effect was attributable to more graduates entering the labor force and shifting from agriculture and the informal sector. Similarly, Fabregas (2019) leveraged a later expansion of this policy in 1993 and found that each additional telesecundaria per 1,000 adolescents led to an average increase of 0.2 years of education, and a decline in fertility for women, but no conclusive evidence of long-term effects on labor market outcomes.

It is crucial to interpret these results keeping in mind the settings where the interventions were implemented. As we mention above, part of the reason why they have proven effective is that the “counterfactual” conditions for learning (i.e., what would have happened to learners in the absence of such programs) was either to not have access to schooling or to be exposed to low-quality instruction. School systems interested in taking up similar interventions should assess the extent to which their learners (or parts of their learner population) find themselves in similar conditions to the subjects of the studies above. This illustrates the importance of assessing the needs of a system before reviewing the evidence.

Preloaded hardware

Technology also seems well positioned to disseminate educational materials. Specifically, hardware (e.g., desktop computers, laptops, or tablets) could also help deliver educational software (e.g., word processing, reference texts, and/or games). In theory, these materials could not only undergo a quality assurance review (e.g., by curriculum specialists and educators), but also draw on the interactions with learners for adjustments (e.g., identifying areas needing reinforcement) and enable interactions between learners and educators.

In practice, however, most initiatives that have provided learners with free computers, laptops, and netbooks do not leverage any of the opportunities mentioned above. Instead, they install a standard set of educational materials and hope that learners find them helpful enough to take them up on their own. Students rarely do so, and instead use the laptops for recreational purposes—often, to the detriment of their learning (see, e.g., Malamud & Pop-Eleches, 2011). In fact, free netbook initiatives have not only consistently failed to improve academic achievement in math or language (e.g., Cristia et al., 2017), but they have had no impact on learners’ general computer skills (e.g., Beuermann et al., 2015). Some of these initiatives have had small impacts on cognitive skills, but the mechanisms through which those effects occurred remains unclear.

To our knowledge, the only successful deployment of a free laptop initiative was one in which a team of researchers equipped the computers with remedial software. Mo et al. (2013) evaluated a version of the One Laptop per Child (OLPC) program for grade 3 students in migrant schools in Beijing, China in which the laptops were loaded with a remedial software mapped onto the national curriculum for math (similar to the software products that we discuss under “practice exercises” below). After nine months, the program improved math achievement by 0.17 SDs and computer skills by 0.33 SDs. If a school system decides to invest in free laptops, this study suggests that the quality of the software on the laptops is crucial.

To date, however, the evidence suggests that children do not learn more from interacting with laptops than they do from textbooks. For example, Bando, Gallego, Gertler, and Romero (2016) compared the effect of free laptop and textbook provision in 271 elementary schools in disadvantaged areas of Honduras. After seven months, students in grades 3 and 6 who had received the laptops performed on par with those who had received the textbooks in math and language. Further, even if textbooks essentially become obsolete at the end of each school year, whereas laptops can be reloaded with new materials for each year, the costs of laptop provision (not just the hardware, but also the technical assistance, Internet, and training associated with it) are not yet low enough to make them a more cost-effective way of delivering content to learners.

Evidence on the provision of tablets equipped with software is encouraging but limited. For example, de Hoop et al. (2020) evaluated a composite intervention for first grade students in Zambia’s Eastern Province that combined infrastructure (electricity via solar power), hardware (projectors and tablets), and educational materials (lesson plans for educators and interactive lessons for learners, both loaded onto the tablets and mapped onto the official Zambian curriculum). After 14 months, the intervention had improved student early-grade reading by 0.4 SDs, oral vocabulary scores by 0.25 SDs, and early-grade math by 0.22 SDs. It also improved students’ achievement by 0.16 on a locally developed assessment. The multifaceted nature of the program, however, makes it challenging to identify the components that are driving the positive effects. Pitchford (2015) evaluated an intervention that provided tablets equipped with educational “apps,” to be used for 30 minutes per day for two months to develop early math skills among students in grades 1 through 3 in Lilongwe, Malawi. The evaluation found positive impacts in math achievement, but the main study limitation is that it was conducted in a single school.

Facilitating differentiated instruction

Another way in which technology may improve educational outcomes is by facilitating the delivery of differentiated or individualized instruction. Most developing countries massively expanded access to schooling in recent decades by building new schools and making education more affordable, both by defraying direct costs, as well as compensating for opportunity costs (Duflo, 2001; World Bank, 2018). These initiatives have not only rapidly increased the number of learners enrolled in school, but have also increased the variability in learner’ preparation for schooling. Consequently, a large number of learners perform well below grade-based curricular expectations (see, e.g., Duflo, Dupas, & Kremer, 2011; Pritchett & Beatty, 2015). These learners are unlikely to get much from “one-size-fits-all” instruction, in which a single educator delivers instruction deemed appropriate for the middle (or top) of the achievement distribution (Banerjee & Duflo, 2011). Technology could potentially help these learners by providing them with: (a) instruction and opportunities for practice that adjust to the level and pace of preparation of each individual (known as “computer-adaptive learning” (CAL)); or (b) live, one-on-one tutoring.

Computer-adaptive learning

One of the main comparative advantages of technology is its ability to diagnose students’ initial learning levels and assign students to instruction and exercises of appropriate difficulty. No individual educator—no matter how talented—can be expected to provide individualized instruction to all learners in his/her class simultaneously . In this respect, technology is uniquely positioned to complement traditional teaching. This use of technology could help learners master basic skills and help them get more out of schooling.

Although many software products evaluated in recent years have been categorized as CAL, many rely on a relatively coarse level of differentiation at an initial stage (e.g., a diagnostic test) without further differentiation. We discuss these initiatives under the category of “increasing opportunities for practice” below. CAL initiatives complement an initial diagnostic with dynamic adaptation (i.e., at each response or set of responses from learners) to adjust both the initial level of difficulty and rate at which it increases or decreases, depending on whether learners’ responses are correct or incorrect.

Existing evidence on this specific type of programs is highly promising. Most famously, Banerjee et al. (2007) evaluated CAL software in Vadodara, in the Indian state of Gujarat, in which grade 4 students were offered two hours of shared computer time per week before and after school, during which they played games that involved solving math problems. The level of difficulty of such problems adjusted based on students’ answers. This program improved math achievement by 0.35 and 0.47 SDs after one and two years of implementation, respectively. Consistent with the promise of personalized learning, the software improved achievement for all students. In fact, one year after the end of the program, students assigned to the program still performed 0.1 SDs better than those assigned to a business as usual condition. More recently, Muralidharan, et al. (2019) evaluated a “blended learning” initiative in which students in grades 4 through 9 in Delhi, India received 45 minutes of interaction with CAL software for math and language, and 45 minutes of small group instruction before or after going to school. After only 4.5 months, the program improved achievement by 0.37 SDs in math and 0.23 SDs in Hindi. While all learners benefited from the program in absolute terms, the lowest performing learners benefited the most in relative terms, since they were learning very little in school.

We see two important limitations from this body of research. First, to our knowledge, none of these initiatives has been evaluated when implemented during the school day. Therefore, it is not possible to distinguish the effect of the adaptive software from that of additional instructional time. Second, given that most of these programs were facilitated by local instructors, attempts to distinguish the effect of the software from that of the instructors has been mostly based on noncausal evidence. A frontier challenge in this body of research is to understand whether CAL software can increase the effectiveness of school-based instruction by substituting part of the regularly scheduled time for math and language instruction.

Live one-on-one tutoring

Recent improvements in the speed and quality of videoconferencing, as well as in the connectivity of remote areas, have enabled yet another way in which technology can help personalization: live (i.e., real-time) one-on-one tutoring. While the evidence on in-person tutoring is scarce in developing countries, existing studies suggest that this approach works best when it is used to personalize instruction (see, e.g., Banerjee et al., 2007; Banerji, Berry, & Shotland, 2015; Cabezas, Cuesta, & Gallego, 2011).

There are almost no studies on the impact of online tutoring—possibly, due to the lack of hardware and Internet connectivity in low- and middle-income countries. One exception is Chemin and Oledan (2020)’s recent evaluation of an online tutoring program for grade 6 students in Kianyaga, Kenya to learn English from volunteers from a Canadian university via Skype ( videoconferencing software) for one hour per week after school. After 10 months, program beneficiaries performed 0.22 SDs better in a test of oral comprehension, improved their comfort using technology for learning, and became more willing to engage in cross-cultural communication. Importantly, while the tutoring sessions used the official English textbooks and sought in part to help learners with their homework, tutors were trained on several strategies to teach to each learner’s individual level of preparation, focusing on basic skills if necessary. To our knowledge, similar initiatives within a country have not yet been rigorously evaluated.

Expanding opportunities for practice

A third way in which technology may improve the quality of education is by providing learners with additional opportunities for practice. In many developing countries, lesson time is primarily devoted to lectures, in which the educator explains the topic and the learners passively copy explanations from the blackboard. This setup leaves little time for in-class practice. Consequently, learners who did not understand the explanation of the material during lecture struggle when they have to solve homework assignments on their own. Technology could potentially address this problem by allowing learners to review topics at their own pace.

Practice exercises

Technology can help learners get more out of traditional instruction by providing them with opportunities to implement what they learn in class. This approach could, in theory, allow some learners to anchor their understanding of the material through trial and error (i.e., by realizing what they may not have understood correctly during lecture and by getting better acquainted with special cases not covered in-depth in class).

Existing evidence on practice exercises reflects both the promise and the limitations of this use of technology in developing countries. For example, Lai et al. (2013) evaluated a program in Shaanxi, China where students in grades 3 and 5 were required to attend two 40-minute remedial sessions per week in which they first watched videos that reviewed the material that had been introduced in their math lessons that week and then played games to practice the skills introduced in the video. After four months, the intervention improved math achievement by 0.12 SDs. Many other evaluations of comparable interventions have found similar small-to-moderate results (see, e.g., Lai, Luo, Zhang, Huang, & Rozelle, 2015; Lai et al., 2012; Mo et al., 2015; Pitchford, 2015). These effects, however, have been consistently smaller than those of initiatives that adjust the difficulty of the material based on students’ performance (e.g., Banerjee et al., 2007; Muralidharan, et al., 2019). We hypothesize that these programs do little for learners who perform several grade levels behind curricular expectations, and who would benefit more from a review of foundational concepts from earlier grades.

We see two important limitations from this research. First, most initiatives that have been evaluated thus far combine instructional videos with practice exercises, so it is hard to know whether their effects are driven by the former or the latter. In fact, the program in China described above allowed learners to ask their peers whenever they did not understand a difficult concept, so it potentially also captured the effect of peer-to-peer collaboration. To our knowledge, no studies have addressed this gap in the evidence.

Second, most of these programs are implemented before or after school, so we cannot distinguish the effect of additional instructional time from that of the actual opportunity for practice. The importance of this question was first highlighted by Linden (2008), who compared two delivery mechanisms for game-based remedial math software for students in grades 2 and 3 in a network of schools run by a nonprofit organization in Gujarat, India: one in which students interacted with the software during the school day and another one in which students interacted with the software before or after school (in both cases, for three hours per day). After a year, the first version of the program had negatively impacted students’ math achievement by 0.57 SDs and the second one had a null effect. This study suggested that computer-assisted learning is a poor substitute for regular instruction when it is of high quality, as was the case in this well-functioning private network of schools.

In recent years, several studies have sought to remedy this shortcoming. Mo et al. (2014) were among the first to evaluate practice exercises delivered during the school day. They evaluated an initiative in Shaanxi, China in which students in grades 3 and 5 were required to interact with the software similar to the one in Lai et al. (2013) for two 40-minute sessions per week. The main limitation of this study, however, is that the program was delivered during regularly scheduled computer lessons, so it could not determine the impact of substituting regular math instruction. Similarly, Mo et al. (2020) evaluated a self-paced and a teacher-directed version of a similar program for English for grade 5 students in Qinghai, China. Yet, the key shortcoming of this study is that the teacher-directed version added several components that may also influence achievement, such as increased opportunities for teachers to provide students with personalized assistance when they struggled with the material. Ma, Fairlie, Loyalka, and Rozelle (2020) compared the effectiveness of additional time-delivered remedial instruction for students in grades 4 to 6 in Shaanxi, China through either computer-assisted software or using workbooks. This study indicates whether additional instructional time is more effective when using technology, but it does not address the question of whether school systems may improve the productivity of instructional time during the school day by substituting educator-led with computer-assisted instruction.

Increasing learner engagement

Another way in which technology may improve education is by increasing learners’ engagement with the material. In many school systems, regular “chalk and talk” instruction prioritizes time for educators’ exposition over opportunities for learners to ask clarifying questions and/or contribute to class discussions. This, combined with the fact that many developing-country classrooms include a very large number of learners (see, e.g., Angrist & Lavy, 1999; Duflo, Dupas, & Kremer, 2015), may partially explain why the majority of those students are several grade levels behind curricular expectations (e.g., Muralidharan, et al., 2019; Muralidharan & Zieleniak, 2014; Pritchett & Beatty, 2015). Technology could potentially address these challenges by: (a) using video tutorials for self-paced learning and (b) presenting exercises as games and/or gamifying practice.

Video tutorials

Technology can potentially increase learner effort and understanding of the material by finding new and more engaging ways to deliver it. Video tutorials designed for self-paced learning—as opposed to videos for whole class instruction, which we discuss under the category of “prerecorded lessons” above—can increase learner effort in multiple ways, including: allowing learners to focus on topics with which they need more help, letting them correct errors and misconceptions on their own, and making the material appealing through visual aids. They can increase understanding by breaking the material into smaller units and tackling common misconceptions.

In spite of the popularity of instructional videos, there is relatively little evidence on their effectiveness. Yet, two recent evaluations of different versions of the Khan Academy portal, which mainly relies on instructional videos, offer some insight into their impact. First, Ferman, Finamor, and Lima (2019) evaluated an initiative in 157 public primary and middle schools in five cities in Brazil in which the teachers of students in grades 5 and 9 were taken to the computer lab to learn math from the platform for 50 minutes per week. The authors found that, while the intervention slightly improved learners’ attitudes toward math, these changes did not translate into better performance in this subject. The authors hypothesized that this could be due to the reduction of teacher-led math instruction.

More recently, Büchel, Jakob, Kühnhanss, Steffen, and Brunetti (2020) evaluated an after-school, offline delivery of the Khan Academy portal in grades 3 through 6 in 302 primary schools in Morazán, El Salvador. Students in this study received 90 minutes per week of additional math instruction (effectively nearly doubling total math instruction per week) through teacher-led regular lessons, teacher-assisted Khan Academy lessons, or similar lessons assisted by technical supervisors with no content expertise. (Importantly, the first group provided differentiated instruction, which is not the norm in Salvadorian schools). All three groups outperformed both schools without any additional lessons and classrooms without additional lessons in the same schools as the program. The teacher-assisted Khan Academy lessons performed 0.24 SDs better, the supervisor-led lessons 0.22 SDs better, and the teacher-led regular lessons 0.15 SDs better, but the authors could not determine whether the effects across versions were different.

Together, these studies suggest that instructional videos work best when provided as a complement to, rather than as a substitute for, regular instruction. Yet, the main limitation of these studies is the multifaceted nature of the Khan Academy portal, which also includes other components found to positively improve learner achievement, such as differentiated instruction by students’ learning levels. While the software does not provide the type of personalization discussed above, learners are asked to take a placement test and, based on their score, educators assign them different work. Therefore, it is not clear from these studies whether the effects from Khan Academy are driven by its instructional videos or to the software’s ability to provide differentiated activities when combined with placement tests.

Games and gamification

Technology can also increase learner engagement by presenting exercises as games and/or by encouraging learner to play and compete with others (e.g., using leaderboards and rewards)—an approach known as “gamification.” Both approaches can increase learner motivation and effort by presenting learners with entertaining opportunities for practice and by leveraging peers as commitment devices.

There are very few studies on the effects of games and gamification in low- and middle-income countries. Recently, Araya, Arias Ortiz, Bottan, and Cristia (2019) evaluated an initiative in which grade 4 students in Santiago, Chile were required to participate in two 90-minute sessions per week during the school day with instructional math software featuring individual and group competitions (e.g., tracking each learner’s standing in his/her class and tournaments between sections). After nine months, the program led to improvements of 0.27 SDs in the national student assessment in math (it had no spillover effects on reading). However, it had mixed effects on non-academic outcomes. Specifically, the program increased learners’ willingness to use computers to learn math, but, at the same time, increased their anxiety toward math and negatively impacted learners’ willingness to collaborate with peers. Finally, given that one of the weekly sessions replaced regular math instruction and the other one represented additional math instructional time, it is not clear whether the academic effects of the program are driven by the software or the additional time devoted to learning math.

The prognosis:

How can school systems adopt interventions that match their needs.

Here are five specific and sequential guidelines for decisionmakers to realize the potential of education technology to accelerate student learning.

1. Take stock of how your current schools, educators, and learners are engaging with technology .

Carry out a short in-school survey to understand the current practices and potential barriers to adoption of technology (we have included suggested survey instruments in the Appendices); use this information in your decisionmaking process. For example, we learned from conversations with current and former ministers of education from various developing regions that a common limitation to technology use is regulations that hold school leaders accountable for damages to or losses of devices. Another common barrier is lack of access to electricity and Internet, or even the availability of sufficient outlets for charging devices in classrooms. Understanding basic infrastructure and regulatory limitations to the use of education technology is a first necessary step. But addressing these limitations will not guarantee that introducing or expanding technology use will accelerate learning. The next steps are thus necessary.

“In Africa, the biggest limit is connectivity. Fiber is expensive, and we don’t have it everywhere. The continent is creating a digital divide between cities, where there is fiber, and the rural areas.  The [Ghanaian] administration put in schools offline/online technologies with books, assessment tools, and open source materials. In deploying this, we are finding that again, teachers are unfamiliar with it. And existing policies prohibit students to bring their own tablets or cell phones. The easiest way to do it would have been to let everyone bring their own device. But policies are against it.” H.E. Matthew Prempeh, Minister of Education of Ghana, on the need to understand the local context.

2. Consider how the introduction of technology may affect the interactions among learners, educators, and content .

Our review of the evidence indicates that technology may accelerate student learning when it is used to scale up access to quality content, facilitate differentiated instruction, increase opportunities for practice, or when it increases learner engagement. For example, will adding electronic whiteboards to classrooms facilitate access to more quality content or differentiated instruction? Or will these expensive boards be used in the same way as the old chalkboards? Will providing one device (laptop or tablet) to each learner facilitate access to more and better content, or offer students more opportunities to practice and learn? Solely introducing technology in classrooms without additional changes is unlikely to lead to improved learning and may be quite costly. If you cannot clearly identify how the interactions among the three key components of the instructional core (educators, learners, and content) may change after the introduction of technology, then it is probably not a good idea to make the investment. See Appendix A for guidance on the types of questions to ask.

3. Once decisionmakers have a clear idea of how education technology can help accelerate student learning in a specific context, it is important to define clear objectives and goals and establish ways to regularly assess progress and make course corrections in a timely manner .

For instance, is the education technology expected to ensure that learners in early grades excel in foundational skills—basic literacy and numeracy—by age 10? If so, will the technology provide quality reading and math materials, ample opportunities to practice, and engaging materials such as videos or games? Will educators be empowered to use these materials in new ways? And how will progress be measured and adjusted?

4. How this kind of reform is approached can matter immensely for its success.

It is easy to nod to issues of “implementation,” but that needs to be more than rhetorical. Keep in mind that good use of education technology requires thinking about how it will affect learners, educators, and parents. After all, giving learners digital devices will make no difference if they get broken, are stolen, or go unused. Classroom technologies only matter if educators feel comfortable putting them to work. Since good technology is generally about complementing or amplifying what educators and learners already do, it is almost always a mistake to mandate programs from on high. It is vital that technology be adopted with the input of educators and families and with attention to how it will be used. If technology goes unused or if educators use it ineffectually, the results will disappoint—no matter the virtuosity of the technology. Indeed, unused education technology can be an unnecessary expenditure for cash-strapped education systems. This is why surveying context, listening to voices in the field, examining how technology is used, and planning for course correction is essential.

5. It is essential to communicate with a range of stakeholders, including educators, school leaders, parents, and learners .

Technology can feel alien in schools, confuse parents and (especially) older educators, or become an alluring distraction. Good communication can help address all of these risks. Taking care to listen to educators and families can help ensure that programs are informed by their needs and concerns. At the same time, deliberately and consistently explaining what technology is and is not supposed to do, how it can be most effectively used, and the ways in which it can make it more likely that programs work as intended. For instance, if teachers fear that technology is intended to reduce the need for educators, they will tend to be hostile; if they believe that it is intended to assist them in their work, they will be more receptive. Absent effective communication, it is easy for programs to “fail” not because of the technology but because of how it was used. In short, past experience in rolling out education programs indicates that it is as important to have a strong intervention design as it is to have a solid plan to socialize it among stakeholders.

how can technology solve problems with education

Beyond reopening: A leapfrog moment to transform education?

On September 14, the Center for Universal Education (CUE) will host a webinar to discuss strategies, including around the effective use of education technology, for ensuring resilient schools in the long term and to launch a new education technology playbook “Realizing the promise: How can education technology improve learning for all?”

file-pdf Full Playbook – Realizing the promise: How can education technology improve learning for all? file-pdf References file-pdf Appendix A – Instruments to assess availability and use of technology file-pdf Appendix B – List of reviewed studies file-pdf Appendix C – How may technology affect interactions among students, teachers, and content?

About the Authors

Alejandro j. ganimian, emiliana vegas, frederick m. hess.

  • Media Relations
  • Terms and Conditions
  • Privacy Policy

Stanford University

Along with Stanford news and stories, show me:

  • Student information
  • Faculty/Staff information

We want to provide announcements, events, leadership messages and resources that are relevant to you. Your selection is stored in a browser cookie which you can remove at any time using “Clear all personalization” below.

Image credit: Claire Scully

New advances in technology are upending education, from the recent debut of new artificial intelligence (AI) chatbots like ChatGPT to the growing accessibility of virtual-reality tools that expand the boundaries of the classroom. For educators, at the heart of it all is the hope that every learner gets an equal chance to develop the skills they need to succeed. But that promise is not without its pitfalls.

“Technology is a game-changer for education – it offers the prospect of universal access to high-quality learning experiences, and it creates fundamentally new ways of teaching,” said Dan Schwartz, dean of Stanford Graduate School of Education (GSE), who is also a professor of educational technology at the GSE and faculty director of the Stanford Accelerator for Learning . “But there are a lot of ways we teach that aren’t great, and a big fear with AI in particular is that we just get more efficient at teaching badly. This is a moment to pay attention, to do things differently.”

For K-12 schools, this year also marks the end of the Elementary and Secondary School Emergency Relief (ESSER) funding program, which has provided pandemic recovery funds that many districts used to invest in educational software and systems. With these funds running out in September 2024, schools are trying to determine their best use of technology as they face the prospect of diminishing resources.

Here, Schwartz and other Stanford education scholars weigh in on some of the technology trends taking center stage in the classroom this year.

AI in the classroom

In 2023, the big story in technology and education was generative AI, following the introduction of ChatGPT and other chatbots that produce text seemingly written by a human in response to a question or prompt. Educators immediately worried that students would use the chatbot to cheat by trying to pass its writing off as their own. As schools move to adopt policies around students’ use of the tool, many are also beginning to explore potential opportunities – for example, to generate reading assignments or coach students during the writing process.

AI can also help automate tasks like grading and lesson planning, freeing teachers to do the human work that drew them into the profession in the first place, said Victor Lee, an associate professor at the GSE and faculty lead for the AI + Education initiative at the Stanford Accelerator for Learning. “I’m heartened to see some movement toward creating AI tools that make teachers’ lives better – not to replace them, but to give them the time to do the work that only teachers are able to do,” he said. “I hope to see more on that front.”

He also emphasized the need to teach students now to begin questioning and critiquing the development and use of AI. “AI is not going away,” said Lee, who is also director of CRAFT (Classroom-Ready Resources about AI for Teaching), which provides free resources to help teach AI literacy to high school students across subject areas. “We need to teach students how to understand and think critically about this technology.”

Immersive environments

The use of immersive technologies like augmented reality, virtual reality, and mixed reality is also expected to surge in the classroom, especially as new high-profile devices integrating these realities hit the marketplace in 2024.

The educational possibilities now go beyond putting on a headset and experiencing life in a distant location. With new technologies, students can create their own local interactive 360-degree scenarios, using just a cell phone or inexpensive camera and simple online tools.

“This is an area that’s really going to explode over the next couple of years,” said Kristen Pilner Blair, director of research for the Digital Learning initiative at the Stanford Accelerator for Learning, which runs a program exploring the use of virtual field trips to promote learning. “Students can learn about the effects of climate change, say, by virtually experiencing the impact on a particular environment. But they can also become creators, documenting and sharing immersive media that shows the effects where they live.”

Integrating AI into virtual simulations could also soon take the experience to another level, Schwartz said. “If your VR experience brings me to a redwood tree, you could have a window pop up that allows me to ask questions about the tree, and AI can deliver the answers.”

Gamification

Another trend expected to intensify this year is the gamification of learning activities, often featuring dynamic videos with interactive elements to engage and hold students’ attention.

“Gamification is a good motivator, because one key aspect is reward, which is very powerful,” said Schwartz. The downside? Rewards are specific to the activity at hand, which may not extend to learning more generally. “If I get rewarded for doing math in a space-age video game, it doesn’t mean I’m going to be motivated to do math anywhere else.”

Gamification sometimes tries to make “chocolate-covered broccoli,” Schwartz said, by adding art and rewards to make speeded response tasks involving single-answer, factual questions more fun. He hopes to see more creative play patterns that give students points for rethinking an approach or adapting their strategy, rather than only rewarding them for quickly producing a correct response.

Data-gathering and analysis

The growing use of technology in schools is producing massive amounts of data on students’ activities in the classroom and online. “We’re now able to capture moment-to-moment data, every keystroke a kid makes,” said Schwartz – data that can reveal areas of struggle and different learning opportunities, from solving a math problem to approaching a writing assignment.

But outside of research settings, he said, that type of granular data – now owned by tech companies – is more likely used to refine the design of the software than to provide teachers with actionable information.

The promise of personalized learning is being able to generate content aligned with students’ interests and skill levels, and making lessons more accessible for multilingual learners and students with disabilities. Realizing that promise requires that educators can make sense of the data that’s being collected, said Schwartz – and while advances in AI are making it easier to identify patterns and findings, the data also needs to be in a system and form educators can access and analyze for decision-making. Developing a usable infrastructure for that data, Schwartz said, is an important next step.

With the accumulation of student data comes privacy concerns: How is the data being collected? Are there regulations or guidelines around its use in decision-making? What steps are being taken to prevent unauthorized access? In 2023 K-12 schools experienced a rise in cyberattacks, underscoring the need to implement strong systems to safeguard student data.

Technology is “requiring people to check their assumptions about education,” said Schwartz, noting that AI in particular is very efficient at replicating biases and automating the way things have been done in the past, including poor models of instruction. “But it’s also opening up new possibilities for students producing material, and for being able to identify children who are not average so we can customize toward them. It’s an opportunity to think of entirely new ways of teaching – this is the path I hope to see.”

  • Future Students
  • Current Students
  • Faculty/Staff

Stanford GSE

News and Media

  • News & Media Home
  • Research Stories
  • School’s In
  • In the Media

You are here

How technology is reinventing education.

Image credit: Claire Scully

New advances in technology are upending education, from the recent debut of new artificial intelligence (AI) chatbots like ChatGPT to the growing accessibility of virtual-reality tools that expand the boundaries of the classroom. For educators, at the heart of it all is the hope that every learner gets an equal chance to develop the skills they need to succeed. But that promise is not without its pitfalls.

“Technology is a game-changer for education – it offers the prospect of universal access to high-quality learning experiences, and it creates fundamentally new ways of teaching,” said Dan Schwartz, dean of  Stanford Graduate School of Education  (GSE), who is also a professor of educational technology at the GSE and faculty director of the  Stanford Accelerator for Learning . “But there are a lot of ways we teach that aren’t great, and a big fear with AI in particular is that we just get more efficient at teaching badly. This is a moment to pay attention, to do things differently.”

For K-12 schools, this year also marks the end of the Elementary and Secondary School Emergency Relief (ESSER) funding program, which has provided pandemic recovery funds that many districts used to invest in educational software and systems. With these funds running out in September 2024, schools are trying to determine their best use of technology as they face the prospect of diminishing resources.

Here, Schwartz and other Stanford education scholars weigh in on some of the technology trends taking center stage in the classroom this year.

AI in the classroom

In 2023, the big story in technology and education was generative AI, following the introduction of ChatGPT and other chatbots that produce text seemingly written by a human in response to a question or prompt. Educators immediately  worried  that students would use the chatbot to cheat by trying to pass its writing off as their own. As schools move to adopt policies around students’ use of the tool, many are also beginning to explore potential opportunities – for example, to generate reading assignments or  coach  students during the writing process.

AI can also help automate tasks like grading and lesson planning, freeing teachers to do the human work that drew them into the profession in the first place, said Victor Lee, an associate professor at the GSE and faculty lead for the  AI + Education initiative  at the Stanford Accelerator for Learning. “I’m heartened to see some movement toward creating AI tools that make teachers’ lives better – not to replace them, but to give them the time to do the work that only teachers are able to do,” he said. “I hope to see more on that front.”

He also emphasized the need to teach students now to begin questioning and critiquing the development and use of AI. “AI is not going away,” said Lee, who is also director of  CRAFT  (Classroom-Ready Resources about AI for Teaching), which provides free resources to help teach AI literacy to high school students across subject areas. “We need to teach students how to understand and think critically about this technology.”

Immersive environments

The use of immersive technologies like augmented reality, virtual reality, and mixed reality is also expected to surge in the classroom, especially as new high-profile devices integrating these realities hit the marketplace in 2024.

The educational possibilities now go beyond putting on a headset and experiencing life in a distant location. With new technologies, students can create their own local interactive 360-degree scenarios, using just a cell phone or inexpensive camera and simple online tools.

“This is an area that’s really going to explode over the next couple of years,” said Kristen Pilner Blair, director of research for the  Digital Learning initiative  at the Stanford Accelerator for Learning, which runs a program exploring the use of  virtual field trips  to promote learning. “Students can learn about the effects of climate change, say, by virtually experiencing the impact on a particular environment. But they can also become creators, documenting and sharing immersive media that shows the effects where they live.”

Integrating AI into virtual simulations could also soon take the experience to another level, Schwartz said. “If your VR experience brings me to a redwood tree, you could have a window pop up that allows me to ask questions about the tree, and AI can deliver the answers.”

Gamification

Another trend expected to intensify this year is the gamification of learning activities, often featuring dynamic videos with interactive elements to engage and hold students’ attention.

“Gamification is a good motivator, because one key aspect is reward, which is very powerful,” said Schwartz. The downside? Rewards are specific to the activity at hand, which may not extend to learning more generally. “If I get rewarded for doing math in a space-age video game, it doesn’t mean I’m going to be motivated to do math anywhere else.”

Gamification sometimes tries to make “chocolate-covered broccoli,” Schwartz said, by adding art and rewards to make speeded response tasks involving single-answer, factual questions more fun. He hopes to see more creative play patterns that give students points for rethinking an approach or adapting their strategy, rather than only rewarding them for quickly producing a correct response.

Data-gathering and analysis

The growing use of technology in schools is producing massive amounts of data on students’ activities in the classroom and online. “We’re now able to capture moment-to-moment data, every keystroke a kid makes,” said Schwartz – data that can reveal areas of struggle and different learning opportunities, from solving a math problem to approaching a writing assignment.

But outside of research settings, he said, that type of granular data – now owned by tech companies – is more likely used to refine the design of the software than to provide teachers with actionable information.

The promise of personalized learning is being able to generate content aligned with students’ interests and skill levels, and making lessons more accessible for multilingual learners and students with disabilities. Realizing that promise requires that educators can make sense of the data that’s being collected, said Schwartz – and while advances in AI are making it easier to identify patterns and findings, the data also needs to be in a system and form educators can access and analyze for decision-making. Developing a usable infrastructure for that data, Schwartz said, is an important next step.

With the accumulation of student data comes privacy concerns: How is the data being collected? Are there regulations or guidelines around its use in decision-making? What steps are being taken to prevent unauthorized access? In 2023 K-12 schools experienced a rise in cyberattacks, underscoring the need to implement strong systems to safeguard student data.

Technology is “requiring people to check their assumptions about education,” said Schwartz, noting that AI in particular is very efficient at replicating biases and automating the way things have been done in the past, including poor models of instruction. “But it’s also opening up new possibilities for students producing material, and for being able to identify children who are not average so we can customize toward them. It’s an opportunity to think of entirely new ways of teaching – this is the path I hope to see.”

More Stories

High school student in a classroom

⟵ Go to all Research Stories

Get the Educator

Subscribe to our monthly newsletter.

Stanford Graduate School of Education

482 Galvez Mall Stanford, CA 94305-3096 Tel: (650) 723-2109

  • Contact Admissions
  • GSE Leadership
  • Site Feedback
  • Web Accessibility
  • Career Resources
  • Faculty Open Positions
  • Explore Courses
  • Academic Calendar
  • Office of the Registrar
  • Cubberley Library
  • StanfordWho
  • StanfordYou

Improving lives through learning

how can technology solve problems with education

  • Stanford Home
  • Maps & Directions
  • Search Stanford
  • Emergency Info
  • Terms of Use
  • Non-Discrimination
  • Accessibility

© Stanford University , Stanford , California 94305 .

Unsupported browser detected

Your browser appears to be unsupported. Because of this, portions of the site may not function as intended.

Please install a current version of Chrome , Firefox , Edge , or Safari for a better experience.

Can AI transform education?

Asyia Kazmi

I remember the day I first experienced artificial intelligence  (AI) in education. It was the late ’90s, and I was a maths teacher at a school in London described as having “challenging circumstances.”

I looked at my students, eyes glued to their computer screens, ears covered by headphones, all working in silence using an adaptive maths program. While marvelling at the rare moment of tranquillity, I also wondered: If the students were learning from the technology, what was the point of me being there? After all, I was a teacher, and a rather good one (if I do say so myself!).

Using the student learning outcomes data generated by the educational technology (edtech) program, I split the class into two groups based on their competencies: I taught half of them, while the others worked quietly on their computers, and then we switched. I kept using the data generated by the program to inform my teaching, and over time the students’ results improved. Technology in service of the teacher and the students contributed to our maths results being a top 2% value-add in England!

Fast-forward to today: Generative AI technology is mind-blowing, with great potential to be harnessed for teaching and learning. In a world where seven out of 10 children born in a low- and middle-income countries cannot read by age 10 , AI could help address the dramatic learning equity gaps. But this work needs careful thought.

I have experienced many edtech pitches over the years, but only a few have impressed me. Most are either too focused on the technology or on reaching large numbers of students, without considering the pedagogy, or they fail to address the challenges and barriers that underserved students face in accessing and using technology, particularly in low- and middle-income contexts.

Furthermore, it is all too rare to see any evidence of impact on learning outcomes. (If you don’t show impact, I will assume there is none!)

A few edtech solutions combine evidence and the best of human expertise and wisdom with the benefits that technology can afford, particularly in data analysis. And with the recent advances in AI, especially in natural language processing, speech recognition, and computer vision, I have seen pitches that have blown me away—they genuinely make me wish I were teaching again.

Here are three problems that students and teachers across the globe face, along with AI-based solutions that could help, if they are implemented with careful thought, informed by data, and focused on equity :

For a glossary of technical terms. See below .

Problem 1: Many students don’t have access to high-quality learning resources that are tailored to their needs, interests, and learning levels.

Students may struggle to learn from their starting point and at their own pace, receive timely and constructive feedback, or struggle to find motivation and support for their learning goals. If they fall behind, they are likely to stay behind and drop out, failing to acquire important life skills.

  • Personalized adaptive learning solutions adjust the difficulty, content, and presentation of learning activities based on the student’s performance, preferences, and progress. These platforms have been shown to improve learning outcomes, especially among low-performing students in sub-Saharan Africa  and South Asia. Existing products include Mindspark in India , onebillion in Malawi, and EIDU in Kenya .
  • AI tutors offer one-on-one instruction and guidance for students, using natural language processing and dialogue systems to simulate human interactions. These tutors have been shown to increase student engagement, confidence, and achievement. Rori in Ghana and Khanmigo in the U.S.  are already assisting students in this manner.

These tools need to be able to assess students’ current learning levels and chart the most effective and efficient learning trajectory; ensure that the content aligns with the national curriculum and is relevant and engaging; and, importantly, be sensitive to bias. The issue of how children’s data is gathered and used, and what can be diagnosed from it, requires serious consideration and established guidelines.

Watch: Bill Gates and Tonee Ndungu discuss AI education in Africa

Problem 2: some teachers may not have the training, knowledge, and experience they need to be effective in their roles..

Up to 40% of teachers in sub-Saharan Africa cannot demonstrate proficiency in the subjects they teach. Teachers may also face challenges such as large class sizes, diverse student needs, high curriculum demands, and administrative responsibilities. They may also lack opportunities for professional development, feedback, and collaboration or may lack the confidence to try out new methodologies in the classroom.

  • AI-enabled teacher coaches can help teachers develop and practice their skills in a simulated environment, using natural language processing and computer vision to create realistic scenarios and characters and get feedback. These coaches have been shown to enhance teacher self-efficacy, competence, and performance in high-income countries. Some models use speech recognition software so teachers can record their lessons and get feedback. TeachFX and Loquat Learning are products to watch.
  • AI lesson-planning support programs can help teachers create and customize high-quality learning resources, using natural language processing and semantic analysis to match the resources with curriculum, standards, and student needs. These tools have been shown to save teachers time, increase student engagement, and improve learning outcomes in countries including Kenya and India. Programs in use include Teacher.AI in Sierra Leone, EIDU in Kenya, TeleTaleem in Pakistan and Oak National Academy in the UK .
  • AI assistants can help teachers automate and streamline administrative tasks such as grading, recording attendance, and reporting, using natural language processing, optical character recognition, and machine learning to process and analyze student work and data. These assistants have been shown to reduce teacher workload, provide instant feedback, and monitor student progress. ConveGenius and Smart Paper in India are both being implemented on a broad scale.

Teachers will only use AI-based tools that help solve problems and make their lives easier, so the tools must be user friendly, relevant, and lead to impact. As with student-facing tools, teacher-facing tools must be accurate, engaging, and unbiased, and they must take into account the evidence on how adults, and teachers in particular, learn and apply that learning in the classroom.

Problem 3: It is expensive and time consuming to develop high-quality educational content, as well as assessment and evaluation tools, in multiple local languages and contexts.

It is often expensive for governments to produce teaching and learning resources such as student textbooks and lesson plans in multiple local languages. Governments and educational systems may also lack the data and insights to make informed decisions and policies for improving educational outcomes and equity. Technology can generate good first drafts for experts to review.

  • AI translators can translate educational content into many local languages, using natural language processing and machine translation to produce accurate and fluent translations. These translators can increase access, equity, and inclusion for learners and educators, and they are being tested in countries including South Africa , India, Mali, and Senegal.
  • AI assessors can create, deliver, and score assessments in various formats, such as verbal, handwritten, and multiple choice, using natural language processing, speech recognition, and optical character recognition to evaluate student responses and provide feedback. These assessors have been shown to improve reliability, validity, and efficiency of assessments. Automated assessment platforms in use include Wadhwani in India and EGRA-AI in South Africa.
  • AI evaluators can analyze and optimize educational outcomes using machine learning and data mining to generate insights, recommendations, and predictions based on student data and performance. These evaluators have been shown to enhance student retention, completion, and success in higher education in countries including the United States, Australia, and Japan.

These emerging tools need careful research, development, and testing. They need to have established benchmarks and include quality assurance mechanisms to ensure that translations are accurate and pedagogical principles are followed. Assessments must be accurate and available and cover enough languages, subjects, and age groups. AI-enabled evaluations in the Global South are at a nascent stage, so new tools need to be tested against human evaluators for accuracy and efficiency.

Principles for guiding AI in global education—and beyond

The opportunity to improve educational outcomes through AI is substantial. But we must all keep asking who is and isn’t benefiting from these technological advances. The Bill & Melinda Gates Foundation has established an AI Ethics and Safety Committee that is working alongside our program teams, including Global Education, to address these issues. As the Global Education team  develops strategies and funds solutions that incorporate AI, our team is focusing on the following five principles:

  • Equity . AI systems should be designed and implemented with equity and inclusion in mind, ensuring that they do not exacerbate existing inequalities or create new ones.
  • Data privacy . AI systems must respect and protect the data privacy and security of students and educators and follow ethical and legal standards and norms.
  • Ethics . AI systems for education must adhere to ethical principles and values—such as fairness, justice, dignity, and human rights—in their development and deployment.
  • Evidence and accuracy . AI solutions must be evaluated and validated for their quality, and their accuracy and reliability must be assured for different contexts, languages, and domains.
  • Impact . AI solutions should be monitored and measured for their impact on educational outcomes, such as learning gains.

Engaging with AI or not is no longer a choice. AI is being used already. The world ignores it at the risk of deepening educational inequities in ways we do not yet understand. So let’s put systems and processes in place to ensure that students from all walks of life can benefit from these innovations.

Let’s also work with teachers to enable their use of this technology so they can get the greatest impact for themselves and their students. We have an opportunity to revisit, on a broad scale, what I did in the ’90s, by asking, “How can I use this technology to serve my students and myself most effectively?” I believe it is the integration of technology into teachers’ work that will have the greatest impact.

The Bill & Melinda Gates Foundation is proud to directly fund the following partners mentioned in this article: Eidu ; Teacher AI ; Kytabu ; and EGRA AI . Additionally, we partner with Central Square Foundation , Fab Inc. , and Co-creation Hub to fund programs and innovations across AI and education.

Computer vision . A computer’s ability to recognize people and objects in pictures, illustrations, and videos the way humans see and understand images.

Dialogue system . A computer system designed to converse with humans.

Generative AI . A computer system designed to produce something new based on “training” provided by large data sets (like text or images).

Machine learning . A computer system’s ability to learn without being explicitly programmed to do so, typically using a data set such as numbers, photos, or text.

Machine translation . A computer system’s ability translate text from one language to another using machine learning.

Natural language processing . A computer’s ability to process and produce language in the way humans do.

Optical character recognition . A computer’s ability to convert images of text into editable text that a machine can read.

Semantic analysis . A computer’s use of context to make sense of words or phrases that have multiple potential meanings, to enhance the accuracy of natural language processing.

Speech recognition . A computer’s ability to recognize speech and process it into writing.

AI equity: Ensuring access to AI for all

The first principles guiding our work with ai, six scientists share the innovations that could transform the future.

By submitting your email to subscribe, you agree to the Bill & Melinda Gates Foundation's Privacy & Cookies Notice

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Review Article
  • Open access
  • Published: 12 February 2024

Education reform and change driven by digital technology: a bibliometric study from a global perspective

  • Chengliang Wang 1 ,
  • Xiaojiao Chen 1 ,
  • Teng Yu   ORCID: orcid.org/0000-0001-5198-7261 2 , 3 ,
  • Yidan Liu 1 , 4 &
  • Yuhui Jing 1  

Humanities and Social Sciences Communications volume  11 , Article number:  256 ( 2024 ) Cite this article

14k Accesses

11 Citations

1 Altmetric

Metrics details

  • Development studies
  • Science, technology and society

Amidst the global digital transformation of educational institutions, digital technology has emerged as a significant area of interest among scholars. Such technologies have played an instrumental role in enhancing learner performance and improving the effectiveness of teaching and learning. These digital technologies also ensure the sustainability and stability of education during the epidemic. Despite this, a dearth of systematic reviews exists regarding the current state of digital technology application in education. To address this gap, this study utilized the Web of Science Core Collection as a data source (specifically selecting the high-quality SSCI and SCIE) and implemented a topic search by setting keywords, yielding 1849 initial publications. Furthermore, following the PRISMA guidelines, we refined the selection to 588 high-quality articles. Using software tools such as CiteSpace, VOSviewer, and Charticulator, we reviewed these 588 publications to identify core authors (such as Selwyn, Henderson, Edwards), highly productive countries/regions (England, Australia, USA), key institutions (Monash University, Australian Catholic University), and crucial journals in the field ( Education and Information Technologies , Computers & Education , British Journal of Educational Technology ). Evolutionary analysis reveals four developmental periods in the research field of digital technology education application: the embryonic period, the preliminary development period, the key exploration, and the acceleration period of change. The study highlights the dual influence of technological factors and historical context on the research topic. Technology is a key factor in enabling education to transform and upgrade, and the context of the times is an important driving force in promoting the adoption of new technologies in the education system and the transformation and upgrading of education. Additionally, the study identifies three frontier hotspots in the field: physical education, digital transformation, and professional development under the promotion of digital technology. This study presents a clear framework for digital technology application in education, which can serve as a valuable reference for researchers and educational practitioners concerned with digital technology education application in theory and practice.

Similar content being viewed by others

how can technology solve problems with education

A bibliometric analysis of knowledge mapping in Chinese education digitalization research from 2012 to 2022

how can technology solve problems with education

Digital transformation and digital literacy in the context of complexity within higher education institutions: a systematic literature review

how can technology solve problems with education

Education big data and learning analytics: a bibliometric analysis

Introduction.

Digital technology has become an essential component of modern education, facilitating the extension of temporal and spatial boundaries and enriching the pedagogical contexts (Selwyn and Facer, 2014 ). The advent of mobile communication technology has enabled learning through social media platforms (Szeto et al. 2015 ; Pires et al. 2022 ), while the advancement of augmented reality technology has disrupted traditional conceptions of learning environments and spaces (Perez-Sanagustin et al., 2014 ; Kyza and Georgiou, 2018 ). A wide range of digital technologies has enabled learning to become a norm in various settings, including the workplace (Sjöberg and Holmgren, 2021 ), home (Nazare et al. 2022 ), and online communities (Tang and Lam, 2014 ). Education is no longer limited to fixed locations and schedules, but has permeated all aspects of life, allowing learning to continue at any time and any place (Camilleri and Camilleri, 2016 ; Selwyn and Facer, 2014 ).

The advent of digital technology has led to the creation of several informal learning environments (Greenhow and Lewin, 2015 ) that exhibit divergent form, function, features, and patterns in comparison to conventional learning environments (Nygren et al. 2019 ). Consequently, the associated teaching and learning processes, as well as the strategies for the creation, dissemination, and acquisition of learning resources, have undergone a complete overhaul. The ensuing transformations have posed a myriad of novel issues, such as the optimal structuring of teaching methods by instructors and the adoption of appropriate learning strategies by students in the new digital technology environment. Consequently, an examination of the principles that underpin effective teaching and learning in this environment is a topic of significant interest to numerous scholars engaged in digital technology education research.

Over the course of the last two decades, digital technology has made significant strides in the field of education, notably in extending education time and space and creating novel educational contexts with sustainability. Despite research attempts to consolidate the application of digital technology in education, previous studies have only focused on specific aspects of digital technology, such as Pinto and Leite’s ( 2020 ) investigation into digital technology in higher education and Mustapha et al.’s ( 2021 ) examination of the role and value of digital technology in education during the pandemic. While these studies have provided valuable insights into the practical applications of digital technology in particular educational domains, they have not comprehensively explored the macro-mechanisms and internal logic of digital technology implementation in education. Additionally, these studies were conducted over a relatively brief period, making it challenging to gain a comprehensive understanding of the macro-dynamics and evolutionary process of digital technology in education. Some studies have provided an overview of digital education from an educational perspective but lack a precise understanding of technological advancement and change (Yang et al. 2022 ). Therefore, this study seeks to employ a systematic scientific approach to collate relevant research from 2000 to 2022, comprehend the internal logic and development trends of digital technology in education, and grasp the outstanding contribution of digital technology in promoting the sustainability of education in time and space. In summary, this study aims to address the following questions:

RQ1: Since the turn of the century, what is the productivity distribution of the field of digital technology education application research in terms of authorship, country/region, institutional and journal level?

RQ2: What is the development trend of research on the application of digital technology in education in the past two decades?

RQ3: What are the current frontiers of research on the application of digital technology in education?

Literature review

Although the term “digital technology” has become ubiquitous, a unified definition has yet to be agreed upon by scholars. Because the meaning of the word digital technology is closely related to the specific context. Within the educational research domain, Selwyn’s ( 2016 ) definition is widely favored by scholars (Pinto and Leite, 2020 ). Selwyn ( 2016 ) provides a comprehensive view of various concrete digital technologies and their applications in education through ten specific cases, such as immediate feedback in classes, orchestrating teaching, and community learning. Through these specific application scenarios, Selwyn ( 2016 ) argues that digital technology encompasses technologies associated with digital devices, including but not limited to tablets, smartphones, computers, and social media platforms (such as Facebook and YouTube). Furthermore, Further, the behavior of accessing the internet at any location through portable devices can be taken as an extension of the behavior of applying digital technology.

The evolving nature of digital technology has significant implications in the field of education. In the 1890s, the focus of digital technology in education was on comprehending the nuances of digital space, digital culture, and educational methodologies, with its connotations aligned more towards the idea of e-learning. The advent and subsequent widespread usage of mobile devices since the dawn of the new millennium have been instrumental in the rapid expansion of the concept of digital technology. Notably, mobile learning devices such as smartphones and tablets, along with social media platforms, have become integral components of digital technology (Conole and Alevizou, 2010 ; Batista et al. 2016 ). In recent times, the burgeoning application of AI technology in the education sector has played a vital role in enriching the digital technology lexicon (Banerjee et al. 2021 ). ChatGPT, for instance, is identified as a novel educational technology that has immense potential to revolutionize future education (Rospigliosi, 2023 ; Arif, Munaf and Ul-Haque, 2023 ).

Pinto and Leite ( 2020 ) conducted a comprehensive macroscopic survey of the use of digital technologies in the education sector and identified three distinct categories, namely technologies for assessment and feedback, mobile technologies, and Information Communication Technologies (ICT). This classification criterion is both macroscopic and highly condensed. In light of the established concept definitions of digital technology in the educational research literature, this study has adopted the characterizations of digital technology proposed by Selwyn ( 2016 ) and Pinto and Leite ( 2020 ) as crucial criteria for analysis and research inclusion. Specifically, this criterion encompasses several distinct types of digital technologies, including Information and Communication Technologies (ICT), Mobile tools, eXtended Reality (XR) Technologies, Assessment and Feedback systems, Learning Management Systems (LMS), Publish and Share tools, Collaborative systems, Social media, Interpersonal Communication tools, and Content Aggregation tools.

Methodology and materials

Research method: bibliometric.

The research on econometric properties has been present in various aspects of human production and life, yet systematic scientific theoretical guidance has been lacking, resulting in disorganization. In 1969, British scholar Pritchard ( 1969 ) proposed “bibliometrics,” which subsequently emerged as an independent discipline in scientific quantification research. Initially, Pritchard defined bibliometrics as “the application of mathematical and statistical methods to books and other media of communication,” however, the definition was not entirely rigorous. To remedy this, Hawkins ( 2001 ) expanded Pritchard’s definition to “the quantitative analysis of the bibliographic features of a body of literature.” De Bellis further clarified the objectives of bibliometrics, stating that it aims to analyze and identify patterns in literature, such as the most productive authors, institutions, countries, and journals in scientific disciplines, trends in literary production over time, and collaboration networks (De Bellis, 2009 ). According to Garfield ( 2006 ), bibliometric research enables the examination of the history and structure of a field, the flow of information within the field, the impact of journals, and the citation status of publications over a longer time scale. All of these definitions illustrate the unique role of bibliometrics as a research method for evaluating specific research fields.

This study uses CiteSpace, VOSviewer, and Charticulator to analyze data and create visualizations. Each of these three tools has its own strengths and can complement each other. CiteSpace and VOSviewer use set theory and probability theory to provide various visualization views in fields such as keywords, co-occurrence, and co-authors. They are easy to use and produce visually appealing graphics (Chen, 2006 ; van Eck and Waltman, 2009 ) and are currently the two most widely used bibliometric tools in the field of visualization (Pan et al. 2018 ). In this study, VOSviewer provided the data necessary for the Performance Analysis; Charticulator was then used to redraw using the tabular data exported from VOSviewer (for creating the chord diagram of country collaboration); this was to complement the mapping process, while CiteSpace was primarily utilized to generate keyword maps and conduct burst word analysis.

Data retrieval

This study selected documents from the Science Citation Index Expanded (SCIE) and Social Science Citation Index (SSCI) in the Web of Science Core Collection as the data source, for the following reasons:

(1) The Web of Science Core Collection, as a high-quality digital literature resource database, has been widely accepted by many researchers and is currently considered the most suitable database for bibliometric analysis (Jing et al. 2023a ). Compared to other databases, Web of Science provides more comprehensive data information (Chen et al. 2022a ), and also provides data formats suitable for analysis using VOSviewer and CiteSpace (Gaviria-Marin et al. 2019 ).

(2) The application of digital technology in the field of education is an interdisciplinary research topic, involving technical knowledge literature belonging to the natural sciences and education-related literature belonging to the social sciences. Therefore, it is necessary to select Science Citation Index Expanded (SCIE) and Social Science Citation Index (SSCI) as the sources of research data, ensuring the comprehensiveness of data while ensuring the reliability and persuasiveness of bibliometric research (Hwang and Tsai, 2011 ; Wang et al. 2022 ).

After establishing the source of research data, it is necessary to determine a retrieval strategy (Jing et al. 2023b ). The choice of a retrieval strategy should consider a balance between the breadth and precision of the search formula. That is to say, it should encompass all the literature pertaining to the research topic while excluding irrelevant documents as much as possible. In light of this, this study has set a retrieval strategy informed by multiple related papers (Mustapha et al. 2021 ; Luo et al. 2021 ). The research by Mustapha et al. ( 2021 ) guided us in selecting keywords (“digital” AND “technolog*”) to target digital technology, while Luo et al. ( 2021 ) informed the selection of terms (such as “instruct*,” “teach*,” and “education”) to establish links with the field of education. Then, based on the current application of digital technology in the educational domain and the scope of selection criteria, we constructed the final retrieval strategy. Following the general patterns of past research (Jing et al. 2023a , 2023b ), we conducted a specific screening using the topic search (Topics, TS) function in Web of Science. For the specific criteria used in the screening for this study, please refer to Table 1 .

Literature screening

Literature acquired through keyword searches may contain ostensibly related yet actually unrelated works. Therefore, to ensure the close relevance of literature included in the analysis to the research topic, it is often necessary to perform a manual screening process to identify the final literature to be analyzed, subsequent to completing the initial literature search.

The manual screening process consists of two steps. Initially, irrelevant literature is weeded out based on the title and abstract, with two members of the research team involved in this phase. This stage lasted about one week, resulting in 1106 articles being retained. Subsequently, a comprehensive review of the full text is conducted to accurately identify the literature required for the study. To carry out the second phase of manual screening effectively and scientifically, and to minimize the potential for researcher bias, the research team established the inclusion criteria presented in Table 2 . Three members were engaged in this phase, which took approximately 2 weeks, culminating in the retention of 588 articles after meticulous screening. The entire screening process is depicted in Fig. 1 , adhering to the PRISMA guidelines (Page et al. 2021 ).

figure 1

The process of obtaining and filtering the necessary literature data for research.

Data standardization

Nguyen and Hallinger ( 2020 ) pointed out that raw data extracted from scientific databases often contains multiple expressions of the same term, and not addressing these synonymous expressions could affect research results in bibliometric analysis. For instance, in the original data, the author list may include “Tsai, C. C.” and “Tsai, C.-C.”, while the keyword list may include “professional-development” and “professional development,” which often require merging. Therefore, before analyzing the selected literature, a data disambiguation process is necessary to standardize the data (Strotmann and Zhao, 2012 ; Van Eck and Waltman, 2019 ). This study adopted the data standardization process proposed by Taskin and Al ( 2019 ), mainly including the following standardization operations:

Firstly, the author and source fields in the data are corrected and standardized to differentiate authors with similar names.

Secondly, the study checks whether the journals to which the literature belongs have been renamed in the past over 20 years, so as to avoid the influence of periodical name change on the analysis results.

Finally, the keyword field is standardized by unifying parts of speech and singular/plural forms of keywords, which can help eliminate redundant entries in the knowledge graph.

Performance analysis (RQ1)

This section offers a thorough and detailed analysis of the state of research in the field of digital technology education. By utilizing descriptive statistics and visual maps, it provides a comprehensive overview of the development trends, authors, countries, institutions, and journal distribution within the field. The insights presented in this section are of great significance in advancing our understanding of the current state of research in this field and identifying areas for further investigation. The use of visual aids to display inter-country cooperation and the evolution of the field adds to the clarity and coherence of the analysis.

Time trend of the publications

To understand a research field, it is first necessary to understand the most basic quantitative information, among which the change in the number of publications per year best reflects the development trend of a research field. Figure 2 shows the distribution of publication dates.

figure 2

Time trend of the publications on application of digital technology in education.

From the Fig. 2 , it can be seen that the development of this field over the past over 20 years can be roughly divided into three stages. The first stage was from 2000 to 2007, during which the number of publications was relatively low. Due to various factors such as technological maturity, the academic community did not pay widespread attention to the role of digital technology in expanding the scope of teaching and learning. The second stage was from 2008 to 2019, during which the overall number of publications showed an upward trend, and the development of the field entered an accelerated period, attracting more and more scholars’ attention. The third stage was from 2020 to 2022, during which the number of publications stabilized at around 100. During this period, the impact of the pandemic led to a large number of scholars focusing on the role of digital technology in education during the pandemic, and research on the application of digital technology in education became a core topic in social science research.

Analysis of authors

An analysis of the author’s publication volume provides information about the representative scholars and core research strengths of a research area. Table 3 presents information on the core authors in adaptive learning research, including name, publication number, and average number of citations per article (based on the analysis and statistics from VOSviewer).

Variations in research foci among scholars abound. Within the field of digital technology education application research over the past two decades, Neil Selwyn stands as the most productive author, having published 15 papers garnering a total of 1027 citations, resulting in an average of 68.47 citations per paper. As a Professor at the Faculty of Education at Monash University, Selwyn concentrates on exploring the application of digital technology in higher education contexts (Selwyn et al. 2021 ), as well as related products in higher education such as Coursera, edX, and Udacity MOOC platforms (Bulfin et al. 2014 ). Selwyn’s contributions to the educational sociology perspective include extensive research on the impact of digital technology on education, highlighting the spatiotemporal extension of educational processes and practices through technological means as the greatest value of educational technology (Selwyn, 2012 ; Selwyn and Facer, 2014 ). In addition, he provides a blueprint for the development of future schools in 2030 based on the present impact of digital technology on education (Selwyn et al. 2019 ). The second most productive author in this field, Henderson, also offers significant contributions to the understanding of the important value of digital technology in education, specifically in the higher education setting, with a focus on the impact of the pandemic (Henderson et al. 2015 ; Cohen et al. 2022 ). In contrast, Edwards’ research interests focus on early childhood education, particularly the application of digital technology in this context (Edwards, 2013 ; Bird and Edwards, 2015 ). Additionally, on the technical level, Edwards also mainly prefers digital game technology, because it is a digital technology that children are relatively easy to accept (Edwards, 2015 ).

Analysis of countries/regions and organization

The present study aimed to ascertain the leading countries in digital technology education application research by analyzing 75 countries related to 558 works of literature. Table 4 depicts the top ten countries that have contributed significantly to this field in terms of publication count (based on the analysis and statistics from VOSviewer). Our analysis of Table 4 data shows that England emerged as the most influential country/region, with 92 published papers and 2401 citations. Australia and the United States secured the second and third ranks, respectively, with 90 papers (2187 citations) and 70 papers (1331 citations) published. Geographically, most of the countries featured in the top ten publication volumes are situated in Australia, North America, and Europe, with China being the only exception. Notably, all these countries, except China, belong to the group of developed nations, suggesting that economic strength is a prerequisite for fostering research in the digital technology education application field.

This study presents a visual representation of the publication output and cooperation relationships among different countries in the field of digital technology education application research. Specifically, a chord diagram is employed to display the top 30 countries in terms of publication output, as depicted in Fig. 3 . The chord diagram is composed of nodes and chords, where the nodes are positioned as scattered points along the circumference, and the length of each node corresponds to the publication output, with longer lengths indicating higher publication output. The chords, on the other hand, represent the cooperation relationships between any two countries, and are weighted based on the degree of closeness of the cooperation, with wider chords indicating closer cooperation. Through the analysis of the cooperation relationships, the findings suggest that the main publishing countries in this field are engaged in cooperative relationships with each other, indicating a relatively high level of international academic exchange and research internationalization.

figure 3

In the diagram, nodes are scattered along the circumference of a circle, with the length of each node representing the volume of publications. The weighted arcs connecting any two points on the circle are known as chords, representing the collaborative relationship between the two, with the width of the arc indicating the closeness of the collaboration.

Further analyzing Fig. 3 , we can extract more valuable information, enabling a deeper understanding of the connections between countries in the research field of digital technology in educational applications. It is evident that certain countries, such as the United States, China, and England, display thicker connections, indicating robust collaborative relationships in terms of productivity. These thicker lines signify substantial mutual contributions and shared objectives in certain sectors or fields, highlighting the interconnectedness and global integration in these areas. By delving deeper, we can also explore potential future collaboration opportunities through the chord diagram, identifying possible partners to propel research and development in this field. In essence, the chord diagram successfully encapsulates and conveys the multi-dimensionality of global productivity and cooperation, allowing for a comprehensive understanding of the intricate inter-country relationships and networks in a global context, providing valuable guidance and insights for future research and collaborations.

An in-depth examination of the publishing institutions is provided in Table 5 , showcasing the foremost 10 institutions ranked by their publication volume. Notably, Monash University and Australian Catholic University, situated in Australia, have recorded the most prolific publications within the digital technology education application realm, with 22 and 10 publications respectively. Moreover, the University of Oslo from Norway is featured among the top 10 publishing institutions, with an impressive average citation count of 64 per publication. It is worth highlighting that six institutions based in the United Kingdom were also ranked within the top 10 publishing institutions, signifying their leading position in this area of research.

Analysis of journals

Journals are the main carriers for publishing high-quality papers. Some scholars point out that the two key factors to measure the influence of journals in the specified field are the number of articles published and the number of citations. The more papers published in a magazine and the more citations, the greater its influence (Dzikowski, 2018 ). Therefore, this study utilized VOSviewer to statistically analyze the top 10 journals with the most publications in the field of digital technology in education and calculated the average citations per article (see Table 6 ).

Based on Table 6 , it is apparent that the highest number of articles in the domain of digital technology in education research were published in Education and Information Technologies (47 articles), Computers & Education (34 articles), and British Journal of Educational Technology (32 articles), indicating a higher article output compared to other journals. This underscores the fact that these three journals concentrate more on the application of digital technology in education. Furthermore, several other journals, such as Technology Pedagogy and Education and Sustainability, have published more than 15 articles in this domain. Sustainability represents the open access movement, which has notably facilitated research progress in this field, indicating that the development of open access journals in recent years has had a significant impact. Although there is still considerable disagreement among scholars on the optimal approach to achieve open access, the notion that research outcomes should be accessible to all is widely recognized (Huang et al. 2020 ). On further analysis of the research fields to which these journals belong, except for Sustainability, it is evident that they all pertain to educational technology, thus providing a qualitative definition of the research area of digital technology education from the perspective of journals.

Temporal keyword analysis: thematic evolution (RQ2)

The evolution of research themes is a dynamic process, and previous studies have attempted to present the developmental trajectory of fields by drawing keyword networks in phases (Kumar et al. 2021 ; Chen et al. 2022b ). To understand the shifts in research topics across different periods, this study follows past research and, based on the significant changes in the research field and corresponding technological advancements during the outlined periods, divides the timeline into four stages (the first stage from January 2000 to December 2005, the second stage from January 2006 to December 2011, the third stage from January 2012 to December 2017; and the fourth stage from January 2018 to December 2022). The division into these four stages was determined through a combination of bibliometric analysis and literature review, which presented a clear trajectory of the field’s development. The research analyzes the keyword networks for each time period (as there are only three articles in the first stage, it was not possible to generate an appropriate keyword co-occurrence map, hence only the keyword co-occurrence maps from the second to the fourth stages are provided), to understand the evolutionary track of the digital technology education application research field over time.

2000.1–2005.12: germination period

From January 2000 to December 2005, digital technology education application research was in its infancy. Only three studies focused on digital technology, all of which were related to computers. Due to the popularity of computers, the home became a new learning environment, highlighting the important role of digital technology in expanding the scope of learning spaces (Sutherland et al. 2000 ). In specific disciplines and contexts, digital technology was first favored in medical clinical practice, becoming an important tool for supporting the learning of clinical knowledge and practice (Tegtmeyer et al. 2001 ; Durfee et al. 2003 ).

2006.1–2011.12: initial development period

Between January 2006 and December 2011, it was the initial development period of digital technology education research. Significant growth was observed in research related to digital technology, and discussions and theoretical analyses about “digital natives” emerged. During this phase, scholars focused on the debate about “how to use digital technology reasonably” and “whether current educational models and school curriculum design need to be adjusted on a large scale” (Bennett and Maton, 2010 ; Selwyn, 2009 ; Margaryan et al. 2011 ). These theoretical and speculative arguments provided a unique perspective on the impact of cognitive digital technology on education and teaching. As can be seen from the vocabulary such as “rethinking”, “disruptive pedagogy”, and “attitude” in Fig. 4 , many scholars joined the calm reflection and analysis under the trend of digital technology (Laurillard, 2008 ; Vratulis et al. 2011 ). During this phase, technology was still undergoing dramatic changes. The development of mobile technology had already caught the attention of many scholars (Wong et al. 2011 ), but digital technology represented by computers was still very active (Selwyn et al. 2011 ). The change in technological form would inevitably lead to educational transformation. Collins and Halverson ( 2010 ) summarized the prospects and challenges of using digital technology for learning and educational practices, believing that digital technology would bring a disruptive revolution to the education field and bring about a new educational system. In addition, the term “teacher education” in Fig. 4 reflects the impact of digital technology development on teachers. The rapid development of technology has widened the generation gap between teachers and students. To ensure smooth communication between teachers and students, teachers must keep up with the trend of technological development and establish a lifelong learning concept (Donnison, 2009 ).

figure 4

In the diagram, each node represents a keyword, with the size of the node indicating the frequency of occurrence of the keyword. The connections represent the co-occurrence relationships between keywords, with a higher frequency of co-occurrence resulting in tighter connections.

2012.1–2017.12: critical exploration period

During the period spanning January 2012 to December 2017, the application of digital technology in education research underwent a significant exploration phase. As can be seen from Fig. 5 , different from the previous stage, the specific elements of specific digital technology have started to increase significantly, including the enrichment of technological contexts, the greater variety of research methods, and the diversification of learning modes. Moreover, the temporal and spatial dimensions of the learning environment were further de-emphasized, as noted in previous literature (Za et al. 2014 ). Given the rapidly accelerating pace of technological development, the education system in the digital era is in urgent need of collaborative evolution and reconstruction, as argued by Davis, Eickelmann, and Zaka ( 2013 ).

figure 5

In the domain of digital technology, social media has garnered substantial scholarly attention as a promising avenue for learning, as noted by Pasquini and Evangelopoulos ( 2016 ). The implementation of social media in education presents several benefits, including the liberation of education from the restrictions of physical distance and time, as well as the erasure of conventional educational boundaries. The user-generated content (UGC) model in social media has emerged as a crucial source for knowledge creation and distribution, with the widespread adoption of mobile devices. Moreover, social networks have become an integral component of ubiquitous learning environments (Hwang et al. 2013 ). The utilization of social media allows individuals to function as both knowledge producers and recipients, which leads to a blurring of the conventional roles of learners and teachers. On mobile platforms, the roles of learners and teachers are not fixed, but instead interchangeable.

In terms of research methodology, the prevalence of empirical studies with survey designs in the field of educational technology during this period is evident from the vocabulary used, such as “achievement,” “acceptance,” “attitude,” and “ict.” in Fig. 5 . These studies aim to understand learners’ willingness to adopt and attitudes towards new technologies, and some seek to investigate the impact of digital technologies on learning outcomes through quasi-experimental designs (Domínguez et al. 2013 ). Among these empirical studies, mobile learning emerged as a hot topic, and this is not surprising. First, the advantages of mobile learning environments over traditional ones have been empirically demonstrated (Hwang et al. 2013 ). Second, learners born around the turn of the century have been heavily influenced by digital technologies and have developed their own learning styles that are more open to mobile devices as a means of learning. Consequently, analyzing mobile learning as a relatively novel mode of learning has become an important issue for scholars in the field of educational technology.

The intervention of technology has led to the emergence of several novel learning modes, with the blended learning model being the most representative one in the current phase. Blended learning, a novel concept introduced in the information age, emphasizes the integration of the benefits of traditional learning methods and online learning. This learning mode not only highlights the prominent role of teachers in guiding, inspiring, and monitoring the learning process but also underlines the importance of learners’ initiative, enthusiasm, and creativity in the learning process. Despite being an early conceptualization, blended learning’s meaning has been expanded by the widespread use of mobile technology and social media in education. The implementation of new technologies, particularly mobile devices, has resulted in the transformation of curriculum design and increased flexibility and autonomy in students’ learning processes (Trujillo Maza et al. 2016 ), rekindling scholarly attention to this learning mode. However, some scholars have raised concerns about the potential drawbacks of the blended learning model, such as its significant impact on the traditional teaching system, the lack of systematic coping strategies and relevant policies in several schools and regions (Moskal et al. 2013 ).

2018.1–2022.12: accelerated transformation period

The period spanning from January 2018 to December 2022 witnessed a rapid transformation in the application of digital technology in education research. The field of digital technology education research reached a peak period of publication, largely influenced by factors such as the COVID-19 pandemic (Yu et al. 2023 ). Research during this period was built upon the achievements, attitudes, and social media of the previous phase, and included more elements that reflect the characteristics of this research field, such as digital literacy, digital competence, and professional development, as depicted in Fig. 6 . Alongside this, scholars’ expectations for the value of digital technology have expanded, and the pursuit of improving learning efficiency and performance is no longer the sole focus. Some research now aims to cultivate learners’ motivation and enhance their self-efficacy by applying digital technology in a reasonable manner, as demonstrated by recent studies (Beardsley et al. 2021 ; Creely et al. 2021 ).

figure 6

The COVID-19 pandemic has emerged as a crucial backdrop for the digital technology’s role in sustaining global education, as highlighted by recent scholarly research (Zhou et al. 2022 ; Pan and Zhang, 2020 ; Mo et al. 2022 ). The online learning environment, which is supported by digital technology, has become the primary battleground for global education (Yu, 2022 ). This social context has led to various studies being conducted, with some scholars positing that the pandemic has impacted the traditional teaching order while also expanding learning possibilities in terms of patterns and forms (Alabdulaziz, 2021 ). Furthermore, the pandemic has acted as a catalyst for teacher teaching and technological innovation, and this viewpoint has been empirically substantiated (Moorhouse and Wong, 2021 ). Additionally, some scholars believe that the pandemic’s push is a crucial driving force for the digital transformation of the education system, serving as an essential mechanism for overcoming the system’s inertia (Romero et al. 2021 ).

The rapid outbreak of the pandemic posed a challenge to the large-scale implementation of digital technologies, which was influenced by a complex interplay of subjective and objective factors. Objective constraints included the lack of infrastructure in some regions to support digital technologies, while subjective obstacles included psychological resistance among certain students and teachers (Moorhouse, 2021 ). These factors greatly impacted the progress of online learning during the pandemic. Additionally, Timotheou et al. ( 2023 ) conducted a comprehensive systematic review of existing research on digital technology use during the pandemic, highlighting the critical role played by various factors such as learners’ and teachers’ digital skills, teachers’ personal attributes and professional development, school leadership and management, and administration in facilitating the digitalization and transformation of schools.

The current stage of research is characterized by the pivotal term “digital literacy,” denoting a growing interest in learners’ attitudes and adoption of emerging technologies. Initially, the term “literacy” was restricted to fundamental abilities and knowledge associated with books and print materials (McMillan, 1996 ). However, with the swift advancement of computers and digital technology, there have been various attempts to broaden the scope of literacy beyond its traditional meaning, including game literacy (Buckingham and Burn, 2007 ), information literacy (Eisenberg, 2008 ), and media literacy (Turin and Friesem, 2020 ). Similarly, digital literacy has emerged as a crucial concept, and Gilster and Glister ( 1997 ) were the first to introduce this concept, referring to the proficiency in utilizing technology and processing digital information in academic, professional, and daily life settings. In practical educational settings, learners who possess higher digital literacy often exhibit an aptitude for quickly mastering digital devices and applying them intelligently to education and teaching (Yu, 2022 ).

The utilization of digital technology in education has undergone significant changes over the past two decades, and has been a crucial driver of educational reform with each new technological revolution. The impact of these changes on the underlying logic of digital technology education applications has been noticeable. From computer technology to more recent developments such as virtual reality (VR), augmented reality (AR), and artificial intelligence (AI), the acceleration in digital technology development has been ongoing. Educational reforms spurred by digital technology development continue to be dynamic, as each new digital innovation presents new possibilities and models for teaching practice. This is especially relevant in the post-pandemic era, where the importance of technological progress in supporting teaching cannot be overstated (Mughal et al. 2022 ). Existing digital technologies have already greatly expanded the dimensions of education in both time and space, while future digital technologies aim to expand learners’ perceptions. Researchers have highlighted the potential of integrated technology and immersive technology in the development of the educational metaverse, which is highly anticipated to create a new dimension for the teaching and learning environment, foster a new value system for the discipline of educational technology, and more effectively and efficiently achieve the grand educational blueprint of the United Nations’ Sustainable Development Goals (Zhang et al. 2022 ; Li and Yu, 2023 ).

Hotspot evolution analysis (RQ3)

The examination of keyword evolution reveals a consistent trend in the advancement of digital technology education application research. The emergence and transformation of keywords serve as indicators of the varying research interests in this field. Thus, the utilization of the burst detection function available in CiteSpace allowed for the identification of the top 10 burst words that exhibited a high level of burst strength. This outcome is illustrated in Table 7 .

According to the results presented in Table 7 , the explosive terminology within the realm of digital technology education research has exhibited a concentration mainly between the years 2018 and 2022. Prior to this time frame, the emerging keywords were limited to “information technology” and “computer”. Notably, among them, computer, as an emergent keyword, has always had a high explosive intensity from 2008 to 2018, which reflects the important position of computer in digital technology and is the main carrier of many digital technologies such as Learning Management Systems (LMS) and Assessment and Feedback systems (Barlovits et al. 2022 ).

Since 2018, an increasing number of research studies have focused on evaluating the capabilities of learners to accept, apply, and comprehend digital technologies. As indicated by the use of terms such as “digital literacy” and “digital skill,” the assessment of learners’ digital literacy has become a critical task. Scholarly efforts have been directed towards the development of literacy assessment tools and the implementation of empirical assessments. Furthermore, enhancing the digital literacy of both learners and educators has garnered significant attention. (Nagle, 2018 ; Yu, 2022 ). Simultaneously, given the widespread use of various digital technologies in different formal and informal learning settings, promoting learners’ digital skills has become a crucial objective for contemporary schools (Nygren et al. 2019 ; Forde and OBrien, 2022 ).

Since 2020, the field of applied research on digital technology education has witnessed the emergence of three new hotspots, all of which have been affected to some extent by the pandemic. Firstly, digital technology has been widely applied in physical education, which is one of the subjects that has been severely affected by the pandemic (Parris et al. 2022 ; Jiang and Ning, 2022 ). Secondly, digital transformation has become an important measure for most schools, especially higher education institutions, to cope with the impact of the pandemic globally (García-Morales et al. 2021 ). Although the concept of digital transformation was proposed earlier, the COVID-19 pandemic has greatly accelerated this transformation process. Educational institutions must carefully redesign their educational products to face this new situation, providing timely digital learning methods, environments, tools, and support systems that have far-reaching impacts on modern society (Krishnamurthy, 2020 ; Salas-Pilco et al. 2022 ). Moreover, the professional development of teachers has become a key mission of educational institutions in the post-pandemic era. Teachers need to have a certain level of digital literacy and be familiar with the tools and online teaching resources used in online teaching, which has become a research hotspot today. Organizing digital skills training for teachers to cope with the application of emerging technologies in education is an important issue for teacher professional development and lifelong learning (Garzón-Artacho et al. 2021 ). As the main organizers and practitioners of emergency remote teaching (ERT) during the pandemic, teachers must put cognitive effort into their professional development to ensure effective implementation of ERT (Romero-Hall and Jaramillo Cherrez, 2022 ).

The burst word “digital transformation” reveals that we are in the midst of an ongoing digital technology revolution. With the emergence of innovative digital technologies such as ChatGPT and Microsoft 365 Copilot, technology trends will continue to evolve, albeit unpredictably. While the impact of these advancements on school education remains uncertain, it is anticipated that the widespread integration of technology will significantly affect the current education system. Rejecting emerging technologies without careful consideration is unwise. Like any revolution, the technological revolution in the education field has both positive and negative aspects. Detractors argue that digital technology disrupts learning and memory (Baron, 2021 ) or causes learners to become addicted and distracted from learning (Selwyn and Aagaard, 2020 ). On the other hand, the prudent use of digital technology in education offers a glimpse of a golden age of open learning. Educational leaders and practitioners have the opportunity to leverage cutting-edge digital technologies to address current educational challenges and develop a rational path for the sustainable and healthy growth of education.

Discussion on performance analysis (RQ1)

The field of digital technology education application research has experienced substantial growth since the turn of the century, a phenomenon that is quantifiably apparent through an analysis of authorship, country/region contributions, and institutional engagement. This expansion reflects the increased integration of digital technologies in educational settings and the heightened scholarly interest in understanding and optimizing their use.

Discussion on authorship productivity in digital technology education research

The authorship distribution within digital technology education research is indicative of the field’s intellectual structure and depth. A primary figure in this domain is Neil Selwyn, whose substantial citation rate underscores the profound impact of his work. His focus on the implications of digital technology in higher education and educational sociology has proven to be seminal. Selwyn’s research trajectory, especially the exploration of spatiotemporal extensions of education through technology, provides valuable insights into the multifaceted role of digital tools in learning processes (Selwyn et al. 2019 ).

Other notable contributors, like Henderson and Edwards, present diversified research interests, such as the impact of digital technologies during the pandemic and their application in early childhood education, respectively. Their varied focuses highlight the breadth of digital technology education research, encompassing pedagogical innovation, technological adaptation, and policy development.

Discussion on country/region-level productivity and collaboration

At the country/region level, the United Kingdom, specifically England, emerges as a leading contributor with 92 published papers and a significant citation count. This is closely followed by Australia and the United States, indicating a strong English-speaking research axis. Such geographical concentration of scholarly output often correlates with investment in research and development, technological infrastructure, and the prevalence of higher education institutions engaging in cutting-edge research.

China’s notable inclusion as the only non-Western country among the top contributors to the field suggests a growing research capacity and interest in digital technology in education. However, the lower average citation per paper for China could reflect emerging engagement or different research focuses that may not yet have achieved the same international recognition as Western counterparts.

The chord diagram analysis furthers this understanding, revealing dense interconnections between countries like the United States, China, and England, which indicates robust collaborations. Such collaborations are fundamental in addressing global educational challenges and shaping international research agendas.

Discussion on institutional-level contributions to digital technology education

Institutional productivity in digital technology education research reveals a constellation of universities driving the field forward. Monash University and the Australian Catholic University have the highest publication output, signaling Australia’s significant role in advancing digital education research. The University of Oslo’s remarkable average citation count per publication indicates influential research contributions, potentially reflecting high-quality studies that resonate with the broader academic community.

The strong showing of UK institutions, including the University of London, The Open University, and the University of Cambridge, reinforces the UK’s prominence in this research field. Such institutions are often at the forefront of pedagogical innovation, benefiting from established research cultures and funding mechanisms that support sustained inquiry into digital education.

Discussion on journal publication analysis

An examination of journal outputs offers a lens into the communicative channels of the field’s knowledge base. Journals such as Education and Information Technologies , Computers & Education , and the British Journal of Educational Technology not only serve as the primary disseminators of research findings but also as indicators of research quality and relevance. The impact factor (IF) serves as a proxy for the quality and influence of these journals within the academic community.

The high citation counts for articles published in Computers & Education suggest that research disseminated through this medium has a wide-reaching impact and is of particular interest to the field. This is further evidenced by its significant IF of 11.182, indicating that the journal is a pivotal platform for seminal work in the application of digital technology in education.

The authorship, regional, and institutional productivity in the field of digital technology education application research collectively narrate the evolution of this domain since the turn of the century. The prominence of certain authors and countries underscores the importance of socioeconomic factors and existing academic infrastructure in fostering research productivity. Meanwhile, the centrality of specific journals as outlets for high-impact research emphasizes the role of academic publishing in shaping the research landscape.

As the field continues to grow, future research may benefit from leveraging the collaborative networks that have been elucidated through this analysis, perhaps focusing on underrepresented regions to broaden the scope and diversity of research. Furthermore, the stabilization of publication numbers in recent years invites a deeper exploration into potential plateaus in research trends or saturation in certain sub-fields, signaling an opportunity for novel inquiries and methodological innovations.

Discussion on the evolutionary trends (RQ2)

The evolution of the research field concerning the application of digital technology in education over the past two decades is a story of convergence, diversification, and transformation, shaped by rapid technological advancements and shifting educational paradigms.

At the turn of the century, the inception of digital technology in education was largely exploratory, with a focus on how emerging computer technologies could be harnessed to enhance traditional learning environments. Research from this early period was primarily descriptive, reflecting on the potential and challenges of incorporating digital tools into the educational setting. This phase was critical in establishing the fundamental discourse that would guide subsequent research, as it set the stage for understanding the scope and impact of digital technology in learning spaces (Wang et al. 2023 ).

As the first decade progressed, the narrative expanded to encompass the pedagogical implications of digital technologies. This was a period of conceptual debates, where terms like “digital natives” and “disruptive pedagogy” entered the academic lexicon, underscoring the growing acknowledgment of digital technology as a transformative force within education (Bennett and Maton, 2010 ). During this time, the research began to reflect a more nuanced understanding of the integration of technology, considering not only its potential to change where and how learning occurred but also its implications for educational equity and access.

In the second decade, with the maturation of internet connectivity and mobile technology, the focus of research shifted from theoretical speculations to empirical investigations. The proliferation of digital devices and the ubiquity of social media influenced how learners interacted with information and each other, prompting a surge in studies that sought to measure the impact of these tools on learning outcomes. The digital divide and issues related to digital literacy became central concerns, as scholars explored the varying capacities of students and educators to engage with technology effectively.

Throughout this period, there was an increasing emphasis on the individualization of learning experiences, facilitated by adaptive technologies that could cater to the unique needs and pacing of learners (Jing et al. 2023a ). This individualization was coupled with a growing recognition of the importance of collaborative learning, both online and offline, and the role of digital tools in supporting these processes. Blended learning models, which combined face-to-face instruction with online resources, emerged as a significant trend, advocating for a balance between traditional pedagogies and innovative digital strategies.

The later years, particularly marked by the COVID-19 pandemic, accelerated the necessity for digital technology in education, transforming it from a supplementary tool to an essential platform for delivering education globally (Mo et al. 2022 ; Mustapha et al. 2021 ). This era brought about an unprecedented focus on online learning environments, distance education, and virtual classrooms. Research became more granular, examining not just the pedagogical effectiveness of digital tools, but also their role in maintaining continuity of education during crises, their impact on teacher and student well-being, and their implications for the future of educational policy and infrastructure.

Across these two decades, the research field has seen a shift from examining digital technology as an external addition to the educational process, to viewing it as an integral component of curriculum design, instructional strategies, and even assessment methods. The emergent themes have broadened from a narrow focus on specific tools or platforms to include wider considerations such as data privacy, ethical use of technology, and the environmental impact of digital tools.

Moreover, the field has moved from considering the application of digital technology in education as a primarily cognitive endeavor to recognizing its role in facilitating socio-emotional learning, digital citizenship, and global competencies. Researchers have increasingly turned their attention to the ways in which technology can support collaborative skills, cultural understanding, and ethical reasoning within diverse student populations.

In summary, the past over twenty years in the research field of digital technology applications in education have been characterized by a progression from foundational inquiries to complex analyses of digital integration. This evolution has mirrored the trajectory of technology itself, from a facilitative tool to a pervasive ecosystem defining contemporary educational experiences. As we look to the future, the field is poised to delve into the implications of emerging technologies like AI, AR, and VR, and their potential to redefine the educational landscape even further. This ongoing metamorphosis suggests that the application of digital technology in education will continue to be a rich area of inquiry, demanding continual adaptation and forward-thinking from educators and researchers alike.

Discussion on the study of research hotspots (RQ3)

The analysis of keyword evolution in digital technology education application research elucidates the current frontiers in the field, reflecting a trajectory that is in tandem with the rapidly advancing digital age. This landscape is sculpted by emergent technological innovations and shaped by the demands of an increasingly digital society.

Interdisciplinary integration and pedagogical transformation

One of the frontiers identified from recent keyword bursts includes the integration of digital technology into diverse educational contexts, particularly noted with the keyword “physical education.” The digitalization of disciplines traditionally characterized by physical presence illustrates the pervasive reach of technology and signifies a push towards interdisciplinary integration where technology is not only a facilitator but also a transformative agent. This integration challenges educators to reconceptualize curriculum delivery to accommodate digital tools that can enhance or simulate the physical aspects of learning.

Digital literacy and skills acquisition

Another pivotal frontier is the focus on “digital literacy” and “digital skill”, which has intensified in recent years. This suggests a shift from mere access to technology towards a comprehensive understanding and utilization of digital tools. In this realm, the emphasis is not only on the ability to use technology but also on critical thinking, problem-solving, and the ethical use of digital resources (Yu, 2022 ). The acquisition of digital literacy is no longer an additive skill but a fundamental aspect of modern education, essential for navigating and contributing to the digital world.

Educational digital transformation

The keyword “digital transformation” marks a significant research frontier, emphasizing the systemic changes that education institutions must undergo to align with the digital era (Romero et al. 2021 ). This transformation includes the redesigning of learning environments, pedagogical strategies, and assessment methods to harness digital technology’s full potential. Research in this area explores the complexity of institutional change, addressing the infrastructural, cultural, and policy adjustments needed for a seamless digital transition.

Engagement and participation

Further exploration into “engagement” and “participation” underscores the importance of student-centered learning environments that are mediated by technology. The current frontiers examine how digital platforms can foster collaboration, inclusivity, and active learning, potentially leading to more meaningful and personalized educational experiences. Here, the use of technology seeks to support the emotional and cognitive aspects of learning, moving beyond the transactional view of education to one that is relational and interactive.

Professional development and teacher readiness

As the field evolves, “professional development” emerges as a crucial area, particularly in light of the pandemic which necessitated emergency remote teaching. The need for teacher readiness in a digital age is a pressing frontier, with research focusing on the competencies required for educators to effectively integrate technology into their teaching practices. This includes familiarity with digital tools, pedagogical innovation, and an ongoing commitment to personal and professional growth in the digital domain.

Pandemic as a catalyst

The recent pandemic has acted as a catalyst for accelerated research and application in this field, particularly in the domains of “digital transformation,” “professional development,” and “physical education.” This period has been a litmus test for the resilience and adaptability of educational systems to continue their operations in an emergency. Research has thus been directed at understanding how digital technologies can support not only continuity but also enhance the quality and reach of education in such contexts.

Ethical and societal considerations

The frontier of digital technology in education is also expanding to consider broader ethical and societal implications. This includes issues of digital equity, data privacy, and the sociocultural impact of technology on learning communities. The research explores how educational technology can be leveraged to address inequities and create more equitable learning opportunities for all students, regardless of their socioeconomic background.

Innovation and emerging technologies

Looking forward, the frontiers are set to be influenced by ongoing and future technological innovations, such as artificial intelligence (AI) (Wu and Yu, 2023 ; Chen et al. 2022a ). The exploration into how these technologies can be integrated into educational practices to create immersive and adaptive learning experiences represents a bold new chapter for the field.

In conclusion, the current frontiers of research on the application of digital technology in education are multifaceted and dynamic. They reflect an overarching movement towards deeper integration of technology in educational systems and pedagogical practices, where the goals are not only to facilitate learning but to redefine it. As these frontiers continue to expand and evolve, they will shape the educational landscape, requiring a concerted effort from researchers, educators, policymakers, and technologists to navigate the challenges and harness the opportunities presented by the digital revolution in education.

Conclusions and future research

Conclusions.

The utilization of digital technology in education is a research area that cuts across multiple technical and educational domains and continues to experience dynamic growth due to the continuous progress of technology. In this study, a systematic review of this field was conducted through bibliometric techniques to examine its development trajectory. The primary focus of the review was to investigate the leading contributors, productive national institutions, significant publications, and evolving development patterns. The study’s quantitative analysis resulted in several key conclusions that shed light on this research field’s current state and future prospects.

(1) The research field of digital technology education applications has entered a stage of rapid development, particularly in recent years due to the impact of the pandemic, resulting in a peak of publications. Within this field, several key authors (Selwyn, Henderson, Edwards, etc.) and countries/regions (England, Australia, USA, etc.) have emerged, who have made significant contributions. International exchanges in this field have become frequent, with a high degree of internationalization in academic research. Higher education institutions in the UK and Australia are the core productive forces in this field at the institutional level.

(2) Education and Information Technologies , Computers & Education , and the British Journal of Educational Technology are notable journals that publish research related to digital technology education applications. These journals are affiliated with the research field of educational technology and provide effective communication platforms for sharing digital technology education applications.

(3) Over the past two decades, research on digital technology education applications has progressed from its early stages of budding, initial development, and critical exploration to accelerated transformation, and it is currently approaching maturity. Technological progress and changes in the times have been key driving forces for educational transformation and innovation, and both have played important roles in promoting the continuous development of education.

(4) Influenced by the pandemic, three emerging frontiers have emerged in current research on digital technology education applications, which are physical education, digital transformation, and professional development under the promotion of digital technology. These frontier research hotspots reflect the core issues that the education system faces when encountering new technologies. The evolution of research hotspots shows that technology breakthroughs in education’s original boundaries of time and space create new challenges. The continuous self-renewal of education is achieved by solving one hotspot problem after another.

The present study offers significant practical implications for scholars and practitioners in the field of digital technology education applications. Firstly, it presents a well-defined framework of the existing research in this area, serving as a comprehensive guide for new entrants to the field and shedding light on the developmental trajectory of this research domain. Secondly, the study identifies several contemporary research hotspots, thus offering a valuable decision-making resource for scholars aiming to explore potential research directions. Thirdly, the study undertakes an exhaustive analysis of published literature to identify core journals in the field of digital technology education applications, with Sustainability being identified as a promising open access journal that publishes extensively on this topic. This finding can potentially facilitate scholars in selecting appropriate journals for their research outputs.

Limitation and future research

Influenced by some objective factors, this study also has some limitations. First of all, the bibliometrics analysis software has high standards for data. In order to ensure the quality and integrity of the collected data, the research only selects the periodical papers in SCIE and SSCI indexes, which are the core collection of Web of Science database, and excludes other databases, conference papers, editorials and other publications, which may ignore some scientific research and original opinions in the field of digital technology education and application research. In addition, although this study used professional software to carry out bibliometric analysis and obtained more objective quantitative data, the analysis and interpretation of data will inevitably have a certain subjective color, and the influence of subjectivity on data analysis cannot be completely avoided. As such, future research endeavors will broaden the scope of literature screening and proactively engage scholars in the field to gain objective and state-of-the-art insights, while minimizing the adverse impact of personal subjectivity on research analysis.

Data availability

The datasets analyzed during the current study are available in the Dataverse repository: https://doi.org/10.7910/DVN/F9QMHY

Alabdulaziz MS (2021) COVID-19 and the use of digital technology in mathematics education. Educ Inf Technol 26(6):7609–7633. https://doi.org/10.1007/s10639-021-10602-3

Arif TB, Munaf U, Ul-Haque I (2023) The future of medical education and research: is ChatGPT a blessing or blight in disguise? Med Educ Online 28. https://doi.org/10.1080/10872981.2023.2181052

Banerjee M, Chiew D, Patel KT, Johns I, Chappell D, Linton N, Cole GD, Francis DP, Szram J, Ross J, Zaman S (2021) The impact of artificial intelligence on clinical education: perceptions of postgraduate trainee doctors in London (UK) and recommendations for trainers. BMC Med Educ 21. https://doi.org/10.1186/s12909-021-02870-x

Barlovits S, Caldeira A, Fesakis G, Jablonski S, Koutsomanoli Filippaki D, Lázaro C, Ludwig M, Mammana MF, Moura A, Oehler DXK, Recio T, Taranto E, Volika S(2022) Adaptive, synchronous, and mobile online education: developing the ASYMPTOTE learning environment. Mathematics 10:1628. https://doi.org/10.3390/math10101628

Article   Google Scholar  

Baron NS(2021) Know what? How digital technologies undermine learning and remembering J Pragmat 175:27–37. https://doi.org/10.1016/j.pragma.2021.01.011

Batista J, Morais NS, Ramos F (2016) Researching the use of communication technologies in higher education institutions in Portugal. https://doi.org/10.4018/978-1-5225-0571-6.ch057

Beardsley M, Albó L, Aragón P, Hernández-Leo D (2021) Emergency education effects on teacher abilities and motivation to use digital technologies. Br J Educ Technol 52. https://doi.org/10.1111/bjet.13101

Bennett S, Maton K(2010) Beyond the “digital natives” debate: towards a more nuanced understanding of students’ technology experiences J Comput Assist Learn 26:321–331. https://doi.org/10.1111/j.1365-2729.2010.00360.x

Buckingham D, Burn A (2007) Game literacy in theory and practice 16:323–349

Google Scholar  

Bulfin S, Pangrazio L, Selwyn N (2014) Making “MOOCs”: the construction of a new digital higher education within news media discourse. In: The International Review of Research in Open and Distributed Learning 15. https://doi.org/10.19173/irrodl.v15i5.1856

Camilleri MA, Camilleri AC(2016) Digital learning resources and ubiquitous technologies in education Technol Knowl Learn 22:65–82. https://doi.org/10.1007/s10758-016-9287-7

Chen C(2006) CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature J Am Soc Inf Sci Technol 57:359–377. https://doi.org/10.1002/asi.20317

Chen J, Dai J, Zhu K, Xu L(2022) Effects of extended reality on language learning: a meta-analysis Front Psychol 13:1016519. https://doi.org/10.3389/fpsyg.2022.1016519

Article   PubMed   PubMed Central   Google Scholar  

Chen J, Wang CL, Tang Y (2022b) Knowledge mapping of volunteer motivation: a bibliometric analysis and cross-cultural comparative study. Front Psychol 13. https://doi.org/10.3389/fpsyg.2022.883150

Cohen A, Soffer T, Henderson M(2022) Students’ use of technology and their perceptions of its usefulness in higher education: International comparison J Comput Assist Learn 38(5):1321–1331. https://doi.org/10.1111/jcal.12678

Collins A, Halverson R(2010) The second educational revolution: rethinking education in the age of technology J Comput Assist Learn 26:18–27. https://doi.org/10.1111/j.1365-2729.2009.00339.x

Conole G, Alevizou P (2010) A literature review of the use of Web 2.0 tools in higher education. Walton Hall, Milton Keynes, UK: the Open University, retrieved 17 February

Creely E, Henriksen D, Crawford R, Henderson M(2021) Exploring creative risk-taking and productive failure in classroom practice. A case study of the perceived self-efficacy and agency of teachers at one school Think Ski Creat 42:100951. https://doi.org/10.1016/j.tsc.2021.100951

Davis N, Eickelmann B, Zaka P(2013) Restructuring of educational systems in the digital age from a co-evolutionary perspective J Comput Assist Learn 29:438–450. https://doi.org/10.1111/jcal.12032

De Belli N (2009) Bibliometrics and citation analysis: from the science citation index to cybermetrics, Scarecrow Press. https://doi.org/10.1111/jcal.12032

Domínguez A, Saenz-de-Navarrete J, de-Marcos L, Fernández-Sanz L, Pagés C, Martínez-Herráiz JJ(2013) Gamifying learning experiences: practical implications and outcomes Comput Educ 63:380–392. https://doi.org/10.1016/j.compedu.2012.12.020

Donnison S (2009) Discourses in conflict: the relationship between Gen Y pre-service teachers, digital technologies and lifelong learning. Australasian J Educ Technol 25. https://doi.org/10.14742/ajet.1138

Durfee SM, Jain S, Shaffer K (2003) Incorporating electronic media into medical student education. Acad Radiol 10:205–210. https://doi.org/10.1016/s1076-6332(03)80046-6

Dzikowski P(2018) A bibliometric analysis of born global firms J Bus Res 85:281–294. https://doi.org/10.1016/j.jbusres.2017.12.054

van Eck NJ, Waltman L(2009) Software survey: VOSviewer, a computer program for bibliometric mapping Scientometrics 84:523–538 https://doi.org/10.1007/s11192-009-0146-3

Edwards S(2013) Digital play in the early years: a contextual response to the problem of integrating technologies and play-based pedagogies in the early childhood curriculum Eur Early Child Educ Res J 21:199–212. https://doi.org/10.1080/1350293x.2013.789190

Edwards S(2015) New concepts of play and the problem of technology, digital media and popular-culture integration with play-based learning in early childhood education Technol Pedagogy Educ 25:513–532 https://doi.org/10.1080/1475939x.2015.1108929

Article   MathSciNet   Google Scholar  

Eisenberg MB(2008) Information literacy: essential skills for the information age DESIDOC J Libr Inf Technol 28:39–47. https://doi.org/10.14429/djlit.28.2.166

Forde C, OBrien A (2022) A literature review of barriers and opportunities presented by digitally enhanced practical skill teaching and learning in health science education. Med Educ Online 27. https://doi.org/10.1080/10872981.2022.2068210

García-Morales VJ, Garrido-Moreno A, Martín-Rojas R (2021) The transformation of higher education after the COVID disruption: emerging challenges in an online learning scenario. Front Psychol 12. https://doi.org/10.3389/fpsyg.2021.616059

Garfield E(2006) The history and meaning of the journal impact factor JAMA 295:90. https://doi.org/10.1001/jama.295.1.90

Article   PubMed   Google Scholar  

Garzón-Artacho E, Sola-Martínez T, Romero-Rodríguez JM, Gómez-García G(2021) Teachers’ perceptions of digital competence at the lifelong learning stage Heliyon 7:e07513. https://doi.org/10.1016/j.heliyon.2021.e07513

Gaviria-Marin M, Merigó JM, Baier-Fuentes H(2019) Knowledge management: a global examination based on bibliometric analysis Technol Forecast Soc Change 140:194–220. https://doi.org/10.1016/j.techfore.2018.07.006

Gilster P, Glister P (1997) Digital literacy. Wiley Computer Pub, New York

Greenhow C, Lewin C(2015) Social media and education: reconceptualizing the boundaries of formal and informal learning Learn Media Technol 41:6–30. https://doi.org/10.1080/17439884.2015.1064954

Hawkins DT(2001) Bibliometrics of electronic journals in information science Infor Res 7(1):7–1. http://informationr.net/ir/7-1/paper120.html

Henderson M, Selwyn N, Finger G, Aston R(2015) Students’ everyday engagement with digital technology in university: exploring patterns of use and “usefulness J High Educ Policy Manag 37:308–319 https://doi.org/10.1080/1360080x.2015.1034424

Huang CK, Neylon C, Hosking R, Montgomery L, Wilson KS, Ozaygen A, Brookes-Kenworthy C (2020) Evaluating the impact of open access policies on research institutions. eLife 9. https://doi.org/10.7554/elife.57067

Hwang GJ, Tsai CC(2011) Research trends in mobile and ubiquitous learning: a review of publications in selected journals from 2001 to 2010 Br J Educ Technol 42:E65–E70. https://doi.org/10.1111/j.1467-8535.2011.01183.x

Hwang GJ, Wu PH, Zhuang YY, Huang YM(2013) Effects of the inquiry-based mobile learning model on the cognitive load and learning achievement of students Interact Learn Environ 21:338–354. https://doi.org/10.1080/10494820.2011.575789

Jiang S, Ning CF (2022) Interactive communication in the process of physical education: are social media contributing to the improvement of physical training performance. Universal Access Inf Soc, 1–10. https://doi.org/10.1007/s10209-022-00911-w

Jing Y, Zhao L, Zhu KK, Wang H, Wang CL, Xia Q(2023) Research landscape of adaptive learning in education: a bibliometric study on research publications from 2000 to 2022 Sustainability 15:3115–3115. https://doi.org/10.3390/su15043115

Jing Y, Wang CL, Chen Y, Wang H, Yu T, Shadiev R (2023b) Bibliometric mapping techniques in educational technology research: a systematic literature review. Educ Inf Technol 1–29. https://doi.org/10.1007/s10639-023-12178-6

Krishnamurthy S (2020) The future of business education: a commentary in the shadow of the Covid-19 pandemic. J Bus Res. https://doi.org/10.1016/j.jbusres.2020.05.034

Kumar S, Lim WM, Pandey N, Christopher Westland J (2021) 20 years of electronic commerce research. Electron Commer Res 21:1–40

Kyza EA, Georgiou Y(2018) Scaffolding augmented reality inquiry learning: the design and investigation of the TraceReaders location-based, augmented reality platform Interact Learn Environ 27:211–225. https://doi.org/10.1080/10494820.2018.1458039

Laurillard D(2008) Technology enhanced learning as a tool for pedagogical innovation J Philos Educ 42:521–533. https://doi.org/10.1111/j.1467-9752.2008.00658.x

Li M, Yu Z (2023) A systematic review on the metaverse-based blended English learning. Front Psychol 13. https://doi.org/10.3389/fpsyg.2022.1087508

Luo H, Li G, Feng Q, Yang Y, Zuo M (2021) Virtual reality in K-12 and higher education: a systematic review of the literature from 2000 to 2019. J Comput Assist Learn. https://doi.org/10.1111/jcal.12538

Margaryan A, Littlejohn A, Vojt G(2011) Are digital natives a myth or reality? University students’ use of digital technologies Comput Educ 56:429–440. https://doi.org/10.1016/j.compedu.2010.09.004

McMillan S(1996) Literacy and computer literacy: definitions and comparisons Comput Educ 27:161–170. https://doi.org/10.1016/s0360-1315(96)00026-7

Mo CY, Wang CL, Dai J, Jin P (2022) Video playback speed influence on learning effect from the perspective of personalized adaptive learning: a study based on cognitive load theory. Front Psychology 13. https://doi.org/10.3389/fpsyg.2022.839982

Moorhouse BL (2021) Beginning teaching during COVID-19: newly qualified Hong Kong teachers’ preparedness for online teaching. Educ Stud 1–17. https://doi.org/10.1080/03055698.2021.1964939

Moorhouse BL, Wong KM (2021) The COVID-19 Pandemic as a catalyst for teacher pedagogical and technological innovation and development: teachers’ perspectives. Asia Pac J Educ 1–16. https://doi.org/10.1080/02188791.2021.1988511

Moskal P, Dziuban C, Hartman J (2013) Blended learning: a dangerous idea? Internet High Educ 18:15–23

Mughal MY, Andleeb N, Khurram AFA, Ali MY, Aslam MS, Saleem MN (2022) Perceptions of teaching-learning force about Metaverse for education: a qualitative study. J. Positive School Psychol 6:1738–1745

Mustapha I, Thuy Van N, Shahverdi M, Qureshi MI, Khan N (2021) Effectiveness of digital technology in education during COVID-19 pandemic. a bibliometric analysis. Int J Interact Mob Technol 15:136

Nagle J (2018) Twitter, cyber-violence, and the need for a critical social media literacy in teacher education: a review of the literature. Teach Teach Education 76:86–94

Nazare J, Woolf A, Sysoev I, Ballinger S, Saveski M, Walker M, Roy D (2022) Technology-assisted coaching can increase engagement with learning technology at home and caregivers’ awareness of it. Comput Educ 188:104565

Nguyen UP, Hallinger P (2020) Assessing the distinctive contributions of simulation & gaming to the literature, 1970-2019: a bibliometric review. Simul Gaming 104687812094156. https://doi.org/10.1177/1046878120941569

Nygren H, Nissinen K, Hämäläinen R, Wever B(2019) Lifelong learning: formal, non-formal and informal learning in the context of the use of problem-solving skills in technology-rich environments Br J Educ Technol 50:1759–1770. https://doi.org/10.1111/bjet.12807

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Moher D (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Int J Surg 88:105906

Pan SL, Zhang S(2020) From fighting COVID-19 pandemic to tackling sustainable development goals: an opportunity for responsible information systems research Int J Inf Manage 55:102196. https://doi.org/10.1016/j.ijinfomgt.2020.102196

Pan X, Yan E, Cui M, Hua W(2018) Examining the usage, citation, and diffusion patterns of bibliometric mapping software: a comparative study of three tools J Informetr 12:481–493. https://doi.org/10.1016/j.joi.2018.03.005

Parris Z, Cale L, Harris J, Casey A (2022) Physical activity for health, covid-19 and social media: what, where and why?. Movimento, 28. https://doi.org/10.22456/1982-8918.122533

Pasquini LA, Evangelopoulos N (2016) Sociotechnical stewardship in higher education: a field study of social media policy documents. J Comput High Educ 29:218–239

Pérez-Sanagustín M, Hernández-Leo D, Santos P, Delgado Kloos C, Blat J(2014) Augmenting reality and formality of informal and non-formal settings to enhance blended learning IEEE Trans Learn Technol 7:118–131. https://doi.org/10.1109/TLT.2014.2312719

Pinto M, Leite C (2020) Digital technologies in support of students learning in Higher Education: literature review. Digital Education Review 343–360. https://doi.org/10.1344/der.2020.37.343-360

Pires F, Masanet MJ, Tomasena JM, Scolari CA(2022) Learning with YouTube: beyond formal and informal through new actors, strategies and affordances Convergence 28(3):838–853. https://doi.org/10.1177/1354856521102054

Pritchard A (1969) Statistical bibliography or bibliometrics 25:348

Romero M, Romeu T, Guitert M, Baztán P (2021) Digital transformation in higher education: the UOC case. In ICERI2021 Proceedings (pp. 6695–6703). IATED https://doi.org/10.21125/iceri.2021.1512

Romero-Hall E, Jaramillo Cherrez N (2022) Teaching in times of disruption: faculty digital literacy in higher education during the COVID-19 pandemic. Innovations in Education and Teaching International 1–11. https://doi.org/10.1080/14703297.2022.2030782

Rospigliosi PA(2023) Artificial intelligence in teaching and learning: what questions should we ask of ChatGPT? Interactive Learning Environments 31:1–3. https://doi.org/10.1080/10494820.2023.2180191

Salas-Pilco SZ, Yang Y, Zhang Z(2022) Student engagement in online learning in Latin American higher education during the COVID-19 pandemic: a systematic review. Br J Educ Technol 53(3):593–619. https://doi.org/10.1111/bjet.13190

Selwyn N(2009) The digital native-myth and reality In Aslib proceedings 61(4):364–379. https://doi.org/10.1108/00012530910973776

Selwyn N(2012) Making sense of young people, education and digital technology: the role of sociological theory Oxford Review of Education 38:81–96. https://doi.org/10.1080/03054985.2011.577949

Selwyn N, Facer K(2014) The sociology of education and digital technology: past, present and future Oxford Rev Educ 40:482–496. https://doi.org/10.1080/03054985.2014.933005

Selwyn N, Banaji S, Hadjithoma-Garstka C, Clark W(2011) Providing a platform for parents? Exploring the nature of parental engagement with school Learning Platforms J Comput Assist Learn 27:314–323. https://doi.org/10.1111/j.1365-2729.2011.00428.x

Selwyn N, Aagaard J (2020) Banning mobile phones from classrooms-an opportunity to advance understandings of technology addiction, distraction and cyberbullying. Br J Educ Technol 52. https://doi.org/10.1111/bjet.12943

Selwyn N, O’Neill C, Smith G, Andrejevic M, Gu X (2021) A necessary evil? The rise of online exam proctoring in Australian universities. Media Int Austr 1329878X2110058. https://doi.org/10.1177/1329878x211005862

Selwyn N, Pangrazio L, Nemorin S, Perrotta C (2019) What might the school of 2030 be like? An exercise in social science fiction. Learn, Media Technol 1–17. https://doi.org/10.1080/17439884.2020.1694944

Selwyn, N (2016) What works and why?* Understanding successful technology enabled learning within institutional contexts 2016 Final report Appendices (Part B). Monash University Griffith University

Sjöberg D, Holmgren R (2021) Informal workplace learning in swedish police education-a teacher perspective. Vocations and Learning. https://doi.org/10.1007/s12186-021-09267-3

Strotmann A, Zhao D (2012) Author name disambiguation: what difference does it make in author-based citation analysis? J Am Soc Inf Sci Technol 63:1820–1833

Article   CAS   Google Scholar  

Sutherland R, Facer K, Furlong R, Furlong J(2000) A new environment for education? The computer in the home. Comput Educ 34:195–212. https://doi.org/10.1016/s0360-1315(99)00045-7

Szeto E, Cheng AY-N, Hong J-C(2015) Learning with social media: how do preservice teachers integrate YouTube and Social Media in teaching? Asia-Pac Educ Res 25:35–44. https://doi.org/10.1007/s40299-015-0230-9

Tang E, Lam C(2014) Building an effective online learning community (OLC) in blog-based teaching portfolios Int High Educ 20:79–85. https://doi.org/10.1016/j.iheduc.2012.12.002

Taskin Z, Al U(2019) Natural language processing applications in library and information science Online Inf Rev 43:676–690. https://doi.org/10.1108/oir-07-2018-0217

Tegtmeyer K, Ibsen L, Goldstein B(2001) Computer-assisted learning in critical care: from ENIAC to HAL Crit Care Med 29:N177–N182. https://doi.org/10.1097/00003246-200108001-00006

Article   CAS   PubMed   Google Scholar  

Timotheou S, Miliou O, Dimitriadis Y, Sobrino SV, Giannoutsou N, Cachia R, Moné AM, Ioannou A(2023) Impacts of digital technologies on education and factors influencing schools' digital capacity and transformation: a literature review. Educ Inf Technol 28(6):6695–6726. https://doi.org/10.1007/s10639-022-11431-8

Trujillo Maza EM, Gómez Lozano MT, Cardozo Alarcón AC, Moreno Zuluaga L, Gamba Fadul M (2016) Blended learning supported by digital technology and competency-based medical education: a case study of the social medicine course at the Universidad de los Andes, Colombia. Int J Educ Technol High Educ 13. https://doi.org/10.1186/s41239-016-0027-9

Turin O, Friesem Y(2020) Is that media literacy?: Israeli and US media scholars’ perceptions of the field J Media Lit Educ 12:132–144. https://doi.org/10.1007/s11192-009-0146-3

Van Eck NJ, Waltman L (2019) VOSviewer manual. Universiteit Leiden

Vratulis V, Clarke T, Hoban G, Erickson G(2011) Additive and disruptive pedagogies: the use of slowmation as an example of digital technology implementation Teach Teach Educ 27:1179–1188. https://doi.org/10.1016/j.tate.2011.06.004

Wang CL, Dai J, Xu LJ (2022) Big data and data mining in education: a bibliometrics study from 2010 to 2022. In 2022 7th International Conference on Cloud Computing and Big Data Analytics ( ICCCBDA ) (pp. 507-512). IEEE. https://doi.org/10.1109/icccbda55098.2022.9778874

Wang CL, Dai J, Zhu KK, Yu T, Gu XQ (2023) Understanding the continuance intention of college students toward new E-learning spaces based on an integrated model of the TAM and TTF. Int J Hum-Comput Int 1–14. https://doi.org/10.1080/10447318.2023.2291609

Wong L-H, Boticki I, Sun J, Looi C-K(2011) Improving the scaffolds of a mobile-assisted Chinese character forming game via a design-based research cycle Comput Hum Behav 27:1783–1793. https://doi.org/10.1016/j.chb.2011.03.005

Wu R, Yu Z (2023) Do AI chatbots improve students learning outcomes? Evidence from a meta-analysis. Br J Educ Technol. https://doi.org/10.1111/bjet.13334

Yang D, Zhou J, Shi D, Pan Q, Wang D, Chen X, Liu J (2022) Research status, hotspots, and evolutionary trends of global digital education via knowledge graph analysis. Sustainability 14:15157–15157. https://doi.org/10.3390/su142215157

Yu T, Dai J, Wang CL (2023) Adoption of blended learning: Chinese university students’ perspectives. Humanit Soc Sci Commun 10:390. https://doi.org/10.3390/su142215157

Yu Z (2022) Sustaining student roles, digital literacy, learning achievements, and motivation in online learning environments during the COVID-19 pandemic. Sustainability 14:4388. https://doi.org/10.3390/su14084388

Za S, Spagnoletti P, North-Samardzic A(2014) Organisational learning as an emerging process: the generative role of digital tools in informal learning practices Br J Educ Technol 45:1023–1035. https://doi.org/10.1111/bjet.12211

Zhang X, Chen Y, Hu L, Wang Y (2022) The metaverse in education: definition, framework, features, potential applications, challenges, and future research topics. Front Psychol 13:1016300. https://doi.org/10.3389/fpsyg.2022.1016300

Zhou M, Dzingirai C, Hove K, Chitata T, Mugandani R (2022) Adoption, use and enhancement of virtual learning during COVID-19. Education and Information Technologies. https://doi.org/10.1007/s10639-022-10985-x

Download references

Acknowledgements

This research was supported by the Zhejiang Provincial Social Science Planning Project, “Mechanisms and Pathways for Empowering Classroom Teaching through Learning Spaces under the Strategy of High-Quality Education Development”, the 2022 National Social Science Foundation Education Youth Project “Research on the Strategy of Creating Learning Space Value and Empowering Classroom Teaching under the background of ‘Double Reduction’” (Grant No. CCA220319) and the National College Student Innovation and Entrepreneurship Training Program of China (Grant No. 202310337023).

Author information

Authors and affiliations.

College of Educational Science and Technology, Zhejiang University of Technology, Zhejiang, China

Chengliang Wang, Xiaojiao Chen, Yidan Liu & Yuhui Jing

Graduate School of Business, Universiti Sains Malaysia, Minden, Malaysia

Department of Management, The Chinese University of Hong Kong, Hong Kong, China

College of Humanities and Social Sciences, Beihang University, Beijing, China

You can also search for this author in PubMed   Google Scholar

Contributions

Conceptualization: Y.J., C.W.; methodology, C.W.; software, C.W., Y.L.; writing-original draft preparation, C.W., Y.L.; writing-review and editing, T.Y., Y.L., C.W.; supervision, X.C., T.Y.; project administration, Y.J.; funding acquisition, X.C., Y.L. All authors read and approved the final manuscript. All authors have read and approved the re-submission of the manuscript.

Corresponding author

Correspondence to Yuhui Jing .

Ethics declarations

Ethical approval.

Ethical approval was not required as the study did not involve human participants.

Informed consent

Informed consent was not required as the study did not involve human participants.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Wang, C., Chen, X., Yu, T. et al. Education reform and change driven by digital technology: a bibliometric study from a global perspective. Humanit Soc Sci Commun 11 , 256 (2024). https://doi.org/10.1057/s41599-024-02717-y

Download citation

Received : 11 July 2023

Accepted : 17 January 2024

Published : 12 February 2024

DOI : https://doi.org/10.1057/s41599-024-02717-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

A meta-analysis of learners’ continuance intention toward online education platforms.

  • Chengliang Wang

Education and Information Technologies (2024)

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

how can technology solve problems with education

Misguided Use of Ed Tech Is a Big Problem. How Schools Can Help Prevent It

how can technology solve problems with education

  • Share article

The nation’s K-12 education sector is heavily invested in educational technology. In 2020 alone, it spent $35.8 billion on technology, mainly to power the massive shift to online learning required during the height of the pandemic, according to data from the Learning Counsel , a research institute.

Although the return to in-person learning did prompt declines in the use of some tools such as Zoom, school use of technology when most students and educators were back in classrooms remained significantly higher than it had been prior to the pandemic, according to EdWeek Research Center survey data. That was, in large part, because of the expansion of 1-to-1 computing programs when students were learning in full-time remote or hybrid instruction.

Despite the heavy financial investment and higher usage of technology in the nation’s K-12 schools, educators are not uniformly satisfied with it.

Wooden figures with comment clouds above their heads filled with 3 dots like an ellipsis.

To find out how K-12 educators feel about the use of technology for teaching and learning, the EdWeek Research Center in December 2022 polled a nationally representative sample of teachers, principals, and district leaders. The survey asked educators: “What is the worst or most misguided use of educational technology you have experienced during your career in K-12 education?”

The most common responses were illuminating, given what schools had been through over the past few years. Topping the list was reliance on ed tech or virtual learning to replace teachers/traditional instruction. That was clearly a response to all the remote or hybrid instruction during the big stretch of the pandemic. (See chart below for the other most common responses.)

The most common responses inevitably point to a big-picture problem with the use of educational technology: It is now far more accepted than ever before, but its use is often inappropriate and/or ineffective.

In some ways over the past few years, educators have adjusted their perspectives about technology. For example, in a nationally representative survey of teachers and district leaders in spring 2020, the EdWeek Research Center sought educators’ opinions on 1-to-1 computing programs (one device per student, provided by schools). An overwhelming 73 percent of survey respondents agreed with this statement posed by the survey: “When schools reopen, students’ increased levels of access to 1-to-1 computing will make high-quality teaching and learning easier.”

Even so, there are plenty of critics of 1-to-1 computing these days. For instance, in the open-ended question in the EdWeek Research Center survey about the most misguided uses of technology, nearly 1 of every 5 educators cited giving students devices or using them ineffectively.

That frustration could be influenced by the lack of alignment many ed-tech tools have with schools’ top priorities. For example, only about a quarter of the 100 most-used ed-tech tools in classrooms meet Every Student Succeeds Act requirements, according to a new report from LearnPlatform , an education technology company that helps districts measure the use and effectiveness of their digital products.

Of course, the reality is that educational technology is now baked into K-12 teaching and learning, despite educators’ frustrations with it. But bad and misguided uses of it should be addressed head-on.

How to Make the Most of Ed Tech

  • Appoint an administrator who can assess the educational value of ed-tech tools, not just someone who knows how the technology works.
  • Develop a strategic plan for ed-tech usage within a school district (as opposed to “one-off” purchases) that emphasizes its top teaching and learning priorities.
  • Consider whether the educational technology will facilitate students actively engaging in learning and create instructional opportunities that would not exist without the technology.
  • Clarify expectations for the use of ed tech when introducing it to students, including clear guidance on what is considered inappropriate use of the technology.
  • Include focused professional development as part of adopting new tech products or services, including ongoing support and training.

SOURCES: Annamaria Schrimpf, president, Massachusetts Educational Technology Administrators Association; and Education Week reporting

Ed-tech experts outline advice for how to make digital learning work better

Education Week turned to two ed-tech experts for input on how schools can avoid inappropriate and/or ineffective use of technology for teaching and learning. Here is what they had to say:

Annamaria Schrimpf has held positions related to ed tech for over a quarter century. Currently, she serves as the president of the Massachusetts Educational Technology Administrators Association and the director of educational technology and digital learning at the Shawsheen Valley Career and Technical Regional school district.

When asked about how schools should implement technology thoughtfully into K-12 learning, Schrimpf said it is vital to have someone in a leadership position who is an educator first and a skilled technologist second. That way, they always put teaching and learning first but also understand how technology can help. “It’s really about leadership,” she said. “Having a key administrator who can guide conversations [about the use of ed tech] forward is imperative.”

While it’s essential to hire a chief technology officer who knows how to maintain technology and troubleshoot related technical problems, that same leader may not have the educator skills or experience to assess the effectiveness of specific ed-tech platforms. School districts need to identify the person who can operate comfortably in both worlds—in some cases, that can be the chief academic officer or a curriculum director.

Christine Elgersma, the senior editor of learning content strategy for Common Sense Media, a nonprofit that evaluates the effectiveness of educational technologies, stresses the importance of using ed tech intentionally. “There are definitely websites and [ed-tech] games that are getting misused as ways to keep kids occupied,” she said. ( One of the most misguided uses of tech cited in the EdWeek Research Center survey was using technology as a “babysitter.” )

Elgersma recommends that educators ask specific questions before purchasing or adopting ed tech, such as:

  • Why are we using technology at this moment and for this purpose?
  • Is it engaging higher-order thinking skills or allowing for greater participation?
  • What will a child get out of this experience?
  • Was this technology developed with kids’ learning in mind?

education week logo subbrand logo RC RGB

Data analysis for this article was provided by the EdWeek Research Center. Learn more about the center’s work.

A version of this article appeared in the April 05, 2023 edition of Education Week as Misguided Use of Ed Tech Is a Big Problem. How Schools Can Help Prevent It

Sign Up for EdWeek Tech Leader

Edweek top school jobs.

Student working on a computer.

Sign Up & Sign In

module image 9

How Important Is Technology in Education? Benefits, Challenges, and Impact on Students

A group of students use their electronics while sitting at their desks.

Many of today’s high-demand jobs were created in the last decade, according to the International Society for Technology in Education (ISTE). As advances in technology drive globalization and digital transformation, teachers can help students acquire the necessary skills to succeed in the careers of the future.

How important is technology in education? The COVID-19 pandemic is quickly demonstrating why online education should be a vital part of teaching and learning. By integrating technology into existing curricula, as opposed to using it solely as a crisis-management tool, teachers can harness online learning as a powerful educational tool.

The effective use of digital learning tools in classrooms can increase student engagement, help teachers improve their lesson plans, and facilitate personalized learning. It also helps students build essential 21st-century skills.

Virtual classrooms, video, augmented reality (AR), robots, and other technology tools can not only make class more lively, they can also create more inclusive learning environments that foster collaboration and inquisitiveness and enable teachers to collect data on student performance.

Still, it’s important to note that technology is a tool used in education and not an end in itself. The promise of educational technology lies in what educators do with it and how it is used to best support their students’ needs.

Educational Technology Challenges

BuiltIn reports that 92 percent of teachers understand the impact of technology in education. According to Project Tomorrow, 59 percent of middle school students say digital educational tools have helped them with their grades and test scores. These tools have become so popular that the educational technology market is projected to expand to $342 billion by 2025, according to the World Economic Forum.

However, educational technology has its challenges, particularly when it comes to implementation and use. For example, despite growing interest in the use of AR, artificial intelligence, and other emerging technology, less than 10 percent of schools report having these tools in their classrooms, according to Project Tomorrow. Additional concerns include excessive screen time, the effectiveness of teachers using the technology, and worries about technology equity.

Prominently rising from the COVID-19 crisis is the issue of content. Educators need to be able to develop and weigh in on online educational content, especially to encourage students to consider a topic from different perspectives. The urgent actions taken during this crisis did not provide sufficient time for this. Access is an added concern — for example, not every school district has resources to provide students with a laptop, and internet connectivity can be unreliable in homes.

Additionally, while some students thrive in online education settings, others lag for various factors, including support resources. For example, a student who already struggled in face-to-face environments may struggle even more in the current situation. These students may have relied on resources that they no longer have in their homes.

Still, most students typically demonstrate confidence in using online education when they have the resources, as studies have suggested. However, online education may pose challenges for teachers, especially in places where it has not been the norm.

Despite the challenges and concerns, it’s important to note the benefits of technology in education, including increased collaboration and communication, improved quality of education, and engaging lessons that help spark imagination and a search for knowledge in students.

The Benefits of Technology in Education

Teachers want to improve student performance, and technology can help them accomplish this aim. To mitigate the challenges, administrators should help teachers gain the competencies needed to enhance learning for students through technology. Additionally, technology in the classroom should make teachers’ jobs easier without adding extra time to their day.

Technology provides students with easy-to-access information, accelerated learning, and fun opportunities to practice what they learn. It enables students to explore new subjects and deepen their understanding of difficult concepts, particularly in STEM. Through the use of technology inside and outside the classroom, students can gain 21st-century technical skills necessary for future occupations.

Still, children learn more effectively with direction. The World Economic Forum reports that while technology can help young students learn and acquire knowledge through play, for example, evidence suggests that learning is more effective through guidance from an adult, such as a teacher.

Leaders and administrators should take stock of where their faculty are in terms of their understanding of online spaces. From lessons learned during this disruptive time, they can implement solutions now for the future. For example, administrators could give teachers a week or two to think carefully about how to teach courses not previously online. In addition to an exploration of solutions, flexibility during these trying times is of paramount importance.

Below are examples of how important technology is in education and the benefits it offers to students and teachers.

Increased Collaboration and Communication

Educational technology can foster collaboration. Not only can teachers engage with students during lessons, but students can also communicate with each other. Through online lessons and learning games, students get to work together to solve problems. In collaborative activities, students can share their thoughts and ideas and support each other. At the same time, technology enables one-on-one interaction with teachers. Students can ask classroom-related questions and seek additional help on difficult-to-understand subject matter. At home, students can upload their homework, and teachers can access and view completed assignments using their laptops.

Personalized Learning Opportunities

Technology allows 24/7 access to educational resources. Classes can take place entirely online via the use of a laptop or mobile device. Hybrid versions of learning combine the use of technology from anywhere with regular in-person classroom sessions. In both scenarios, the use of technology to tailor learning plans for each student is possible. Teachers can create lessons based on student interests and strengths. An added benefit is that students can learn at their own pace. When they need to review class material to get a better understanding of essential concepts, students can review videos in the lesson plan. The data generated through these online activities enable teachers to see which students struggled with certain subjects and offer additional assistance and support.

Curiosity Driven by Engaging Content

Through engaging and educational content, teachers can spark inquisitiveness in children and boost their curiosity, which research says has ties to academic success. Curiosity helps students get a better understanding of math and reading concepts. Creating engaging content can involve the use of AR, videos, or podcasts. For example, when submitting assignments, students can include videos or interact with students from across the globe.

Improved Teacher Productivity and Efficiency

Teachers can leverage technology to achieve new levels of productivity, implement useful digital tools to expand learning opportunities for students, and increase student support and engagement. It also enables teachers to improve their instruction methods and personalize learning. Schools can benefit from technology by reducing the costs of physical instructional materials, enhancing educational program efficiency, and making the best use of teacher time.

Become a Leader in Enriching Classrooms through Technology

Educators unfamiliar with some of the technology used in education may not have been exposed to the tools as they prepared for their careers or as part of their professional development. Teachers looking to make the transition and acquire the skills to incorporate technology in education can take advantage of learning opportunities to advance their competencies. For individuals looking to help transform the education system through technology, American University’s School of Education online offers a Master of Arts in Teaching and a Master of Arts in Education Policy and Leadership to prepare educators with essential tools to become leaders. Courses such as Education Program and Policy Implementation and Teaching Science in Elementary School equip graduate students with critical competencies to incorporate technology into educational settings effectively.

Learn more about American University’s School of Education online and its master’s degree programs.

Virtual Reality in Education: Benefits, Tools, and Resources

Data-Driven Decision Making in Education: 11 Tips for Teachers & Administration

Helping Girls Succeed in STEM

BuiltIn, “Edtech 101”

EdTech, “Teaching Teachers to Put Tech Tools to Work”

International Society for Technology in Education, “Preparing Students for Jobs That Don’t Exist”

The Journal, “How Teachers Use Technology to Enrich Learning Experiences”

Pediatric Research, “Early Childhood Curiosity and Kindergarten Reading and Math Academic Achievement”

Project Tomorrow, “Digital Learning: Peril or Promise for Our K-12 Students”

World Economic Forum, “The Future of Jobs Report 2018”

World Economic Forum, “Learning through Play: How Schools Can Educate Students through Technology”

Request Information

Chatbot avatar

AU Program Helper

This AI chatbot provides automated responses, which may not always be accurate. By continuing with this conversation, you agree that the contents of this chat session may be transcribed and retained. You also consent that this chat session and your interactions, including cookie usage, are subject to our  privacy policy .

The challenges and opportunities of Artificial Intelligence in education

how can technology solve problems with education

Artificial Intelligence (AI) is producing new teaching and learning solutions that are currently being tested globally. These solutions require advanced infrastructures and an ecosystem of thriving innovators. How does that affect countries around the world, and especially developing nations? Should AI be a priority to tackle in order to reduce the digital and social divide?

These are some of the questions explored in a Working Paper entitled ‘ Artificial Intelligence in Education: Challenges and Opportunities for Sustainable Development ’ presented by UNESCO and ProFuturo at Mobile Learning Week 2019 . It features cases studies on how AI technology is helping education systems use data to improve educational equity and quality.

Concrete examples from countries such as China, Brazil and South Africa are examined on AI’s contribution to learning outcomes, access to education and teacher support. Case studies from countries including the United Arab Emirates, Bhutan and Chile are presented on how AI is helping with data analytics in education management.  

The Paper also explores the curriculum and standards dimension of AI, with examples from the European Union, Singapore and the Republic of Korea on how learners and teachers are preparing for an AI-saturated world.

Beyond the opportunities, the Paper also addresses the challenges and policy implications of introducing AI in education and preparing students for an AI-powered future. The challenges presented revolve around:

  • Developing a comprehensive view of public policy on AI for sustainable development : The complexity of the technological conditions needed to advance in this field require the alignment of multiple factors and institutions. Public policies have to work in partnership at international and national levels to create an ecosystem of AI that serves sustainable development.
  • Ensuring inclusion and equity for AI in education : The least developed countries are at risk of suffering new technological, economic and social divides with the development of AI. Some main obstacles such as basic technological infrastructure must be faced to establish the basic conditions for implementing new strategies that take advantage of AI to improve learning.
  • Preparing teachers for an AI-powered education : Teachers must learn new digital skills to use AI in a pedagogical and meaningful way and AI developers must learn how teachers work and create solutions that are sustainable in real-life environments.
  • Developing quality and inclusive data systems : If the world is headed towards the datafication of education, the quality of data should be the main chief concern. It´s essential to develop state capabilities to improve data collection and systematization. AI developments should be an opportunity to increase the importance of data in educational system management.
  • Enhancing research on AI in education : While it can be reasonably expected that research on AI in education will increase in the coming years, it is nevertheless worth recalling the difficulties that the education sector has had in taking stock of educational research in a significant way both for practice and policy-making.
  • Dealing with ethics and transparency in data collection, use and dissemination : AI opens many ethical concerns regarding access to education system, recommendations to individual students, personal data concentration, liability, impact on work, data privacy and ownership of data feeding algorithms. AI regulation will require public discussion on ethics, accountability, transparency and security.

The key discussions taking place at Mobile Learning Week 2019 address these challenges, offering the international educational community, governments and other stakeholders a unique opportunity to explore together the opportunities and threats of AI in all areas of education.

  • Download the working paper

More on this subject

Language Technologies for All – LT4All 2025

Other recent news

UNESCO's Global Skills Academy Spotlight Session at WorldSkills Conference 2024

5 Problems in Education That Technology Will Soon Solve

4

Your changes have been saved

Email is sent

Email has already been sent

Please verify your email address.

You’ve reached your account maximum for followed topics.

Spotify vs. Apple Music: Which Streaming Service Gives the Best Recommendations?

These are the 10 sites i use when amazon and ebay don't have what i want, why i still rock an older laptop (and maybe you should too).

Years ago, associate professor Kentaro Toyama wrote an influential article  and argued that the history of education in technology was "fraught with failures" and that technology could not address the individualized concerns that are necessary for good teaching.

And for a while, his criticisms seemed to hold a lot of water as EdTech ("education technology") never managed to revolutionize classrooms, even after years of investment and many broken promises. However, its time may  finally be here.

The Promise of EdTech

The idea that good teachers are an essential ingredient to good education isn't up for debate, but Toyama's harsh view of EdTech's potential needs addressing. Just because EdTech is "fraught with failures" doesn't mean we should abandon it outright.

In the past 100 years, most industries have evolved in spectacular ways, including in the ways we live our lives and in the ways we work. Yet somehow the classroom is still a century behind, still carving industrial workers in a post-industrial age. There is a sweet spot that can -- and must -- be reached.

Teaching Venn Diagram

The response here should be measured. Calling for a revolution in education might seem like the obvious course, but if it fails, we could end up damaging the lives of millions of children. Then again, the same could be said for leaving the education industry in its outdated state.

Instead, we need to speed up the evolution and adoption of EdTech so that our children can be better educated in the context of this hyper-connected digital era.

The 5 Problems Facing EdTech

Education expert Matthew Lynch once explained the reasons why the U.S. education system is failing , and not just the U.S. system but systems all over the world. As put forth by the article, the most pressing reasons are:

  • Schools are overcrowded.
  • School spending is stagnant.
  • A lack of teacher innovation.
  • A lack of involvement from parents.
  • Technology has become synonymous with entertainment.

For decades now, technology has failed to solve these issues on a large scale, but the blame cannot rest solely with the EdTech industry. Some innovations may have been destined to fail, sure, but others could have exceeded our expectations.

Robert French believes that in these latter cases, the education system has actually failed the tech industry by remaining so hostile to change. After all, the EdTech industry has indeed made rapid advancements in recent years and there is evidence that each of these issues may soon be solved.

The main issue, then, is whether the education system will take advantage of this opportunity to grow. Let's explore what these issues are and how technology could actually solve them for good.

1. Overcrowded Classrooms

A 2009 University of London report stated that "once the class size passes a certain point, the teachers are bound to 'fail' because the demands on their time cannot be met". In essence, the root of this problem is not the number of children in a classroom but rather the inability for each child to receive adequate attention.

Sigma 2 Problem Graph

In 1984, Benjamin Bloom conducted research that undeniably showed that through combining his " mastery learning " techniques and 1:1 tuition, students could perform far beyond other students who were being taught in more conventional ways.

It's with this knowledge that EdTech company Matchbook Learning works with some of the worst performing, overcrowded schools in the U.S. You can see an overview of their approach, building on the research of Bloom, in the video below:

By combining  blended learning  (where face-to-face teaching is combined with online learning) with real-time data, we can get rapid feedback in classrooms and use that feedback to further enhance the quality of education.

As an example, consider a classroom of 30 students. Ten students with similar abilities may work closely with the teacher, another ten may work through lectures and online tasks using computer terminals, and the final ten may work together on a group project. In the next lesson, students are rotated so they can learn in different ways throughout the course.

This kind of approach enables the teacher to focus more closely on fewer children at once. The teacher can also tailor the learning approach for each student based on how well each one works for the individual. Meanwhile, the software on the computes is advanced enough to tailor the content to each student as well.

Matchbook Learning Results

By collecting real-time feedback on each child's results, the course contents can be adapted per student and make it as if they were receiving a one-on-one tuition.

This approach allows each student to have their own learning path that's customized to their needs. By doing this, teachers can easily see which students are falling behind and offer more individualized teaching to those students. The results, as you can see below, have been fantastic. (Each 10% gain is equal to a year's worth of learning.)

If more schools were to adopt a similar approach, where some responsibilities could be handled by tech-aided learning methods, more of the teachers' time could be freed-up to give more attention where it's needed the most, even in larger classroom sizes.

2. Excessive Spending

Donors Choose is a "pioneering crowdfunding site" that allows regular people -- like you and me -- to fund teachers who want to run educational projects but lack the money to do so. Donors can find projects that inspire them and then choose to give however much money they want to the teacher.

It's basically Kickstarter for school projects where you can personally pitch in and help, such as by  funding the purchase of Chromebooks  or  funding the transport costs of a field trip . This tool has the potential to turn once-impossible ideas into an educational reality for kids across the country.

Since its founding in 2000, 69% of public schools in the U.S. have posted projects on the site and over two million citizens have donated well over $400 million, benefiting at least 18 million students.

This is more than a glimmer of hope for a system where lack of funding is one of its biggest problems. And with state education budgets still extremely tight, harnessing the power of the $30 billion crowdfunding industry is a promising way to loosen those purse-strings.

3. Teacher Innovation

In an article on creative teaching, author David Greene writes :

Academic creativity has been drained from degraded and overworked experienced teachers. Uniformity has sucked the life out of teaching and learning.

If teachers were given more freedom, as would likely happen if a blended learning model were introduced as mentioned above, innovation would rocket -- and an education system overhaul isn't exactly necessary to accomplish that.

After all, there are (and will always be) plenty of options open to teachers to introduce more creativity and innovation to their lessons. Some of these options would cost money, but as we've seen, Donors Choose could certainly help there.

Bored Students

Other options include  BlinkLearning , which allows teachers to create their own personalized, interactive courses from content provided by a range of publishers. Students can then access these courses on any device, while the app keeps a record of how they are progressing. If students are struggling, the course can quickly be altered.

A more lightweight option is to use Learnist to curate relevant content to guide students through courses.

If students struggle with boredom, game-based learning can be introduced with KinectEDucation. This is an education community where teachers can download and upload apps and resources for Microsoft Kinect , and learn from the experiences of other teachers. GameDesk is another company creating EdTech games for a variety of subjects.

The list goes on, from using social media to share ideas to using Google Hangouts to form a virtual bookclub. In the future, we'll even see virtual reality field trips , 3D printers in the classroom , and projects managed entirely in OneNote .

4. Parental Involvement

In an article on why technology has failed, Paul D. Fernhout explains that there are two types of learning: learning just in case , which is like the rote memorization approach taken by most schools, and learning on demand , where we acquire information as we need it (not as frequently practiced in schools).

Technology is already fantastic for on-demand education , and that technology is available to all of us at home by means of the Internet. So, this is where parents can currently take the mantle from time-stricken teachers and offer some fun on-demand knowledge to their children.

Kid Using COmputer

In the current schooling landscape, there just isn't time for large amounts of group projects and problem-solving exercises, but these are the kinds of exercises that children can be set with at home. When a child is given a problem exercise and the use of a smartphone, tablet, or computer, on-demand learning happens naturally.

Used in conjunction with the school curriculum, this can really help children to progress.

For example, if your child is learning about Excel spreadsheets at school, try setting them the challenge of creating a pocket-money calculator in Excel. Searching Google, watching YouTube videos, or studying  Excel templates  can offer real education in practical settings. There are tons of other educational projects you can try out, too.

5. Tech Is Not Just Entertainment

To finish, let's look at the issue of how technology has become synonymous with entertainment. The alleged problem here is that when children use technology, they enter an entertainment mode rather than a study mode.

And this is the moment where we need to ask ourselves: Why does education have to be seen as opposed to entertainment?

School VR Headset

As neurologist Judy Willis once explained :

The truth is that when joy and comfort are scrubbed from the classroom and replaced with homogeneity, and when spontaneity is replaced with conformity, students' brains are distanced from effective information processing and long-term memory storage.
The highest-level executive thinking, making of connections, and "aha" moments are more likely to occur in an atmosphere of "exuberant discovery," where students of all ages retain that kindergarten enthusiasm of embracing each day with the joy of learning.

In other words, education does not (and should not) need to be a chore. Throughout this article, I've given a number of EdTech solutions that truly work and encourage entertainment in education, from gamifying the classroom and introducing fun projects  to funding more field trips and creating personalized, interactive courses.

In fact, we've already written about games becoming the future of education  and about how some old games could be used for teaching . As Dann Albright wrote in the former article:

From a psychological perspective, it makes perfect sense: teachers have been using games for ages. Did you ever play Jeopardy in biology class? A quiz game in English? Have a popsicle-stick bridge building competition in physics?

These games are challenging and motivational. But games -- or any other form of entertainment -- with a technological element can be so much more immersive, responsive, and effective, which thereby makes it so much more valuable as a learning aid. More so than lectures, board games, and dull rote tasks, anyway.

Consider the difference in impact between teaching the wonders of history through a lifeless textbook or through an immersive virtual reality tour. It's clear which one would be more effective, so whenever education  can be fun, then it  should  be fun.

Education + Technology = The Future

In a world where technology has the power to transform industries and offer entertainment to every dull moment we encounter, it's time for educators to more whole-heartedly adopt some of these innovations. Not for the sole purpose of improving grades or cutting costs, but to offer our children a more fulfilling educational experience.

And, perhaps more importantly, to empower teachers to more effectively help struggling children while introducing innovation back into the classroom.

Do you think it's time more schools introduced more technology into the classroom? Or do you think classrooms are ok as they are?

Image Credits:  elementary school by Syda Productions via Shutterstock, Classroom by Lead Beyond (Flickr), Next generation by zeitfaenger.at (Flickr), The poor man's VR headset by Kimubert (Flickr)

  • Technology Explained
  • Education Technology
  • Educational Games

More From Forbes

What challenges in education can ai solve today.

Forbes Technology Council

  • Share to Facebook
  • Share to Twitter
  • Share to Linkedin

Dmitry Baraishuk is a Partner and CTO at Software Development company  Belitsoft  with 16+ years of experience in EdTech.

Artificial intelligence (AI) is increasingly becoming one of the disruptive factors in the educational area. AI in the education market has been forecasted to grow by 45.12% annually and reach $10.38 billion by 2026 .

In general, e-learning makes education available anytime and anywhere, which has become crucial in the pandemic and remote work era. Corporations, education tech startups, training companies, universities, schools and students — all parties get a lot of prominent benefits from online learning, like covering larger audiences online. At the same time, AI boosts e-learning to a new level by addressing challenges that are not obvious at first glance.

Challenge: Filling Skill Gaps By Integrating, Upskilling And Reskilling

Studies show that 9 in 10 executives recognize or expect staff skill gaps over the next five years, and less than half of them know how to overcome this challenge. Fifty-six percent of respondents noted that one of the most popular tactics for addressing the skill gaps is upskilling or reskilling across the organization.

However, approximately 70% of HR professionals are not content with how their organizations address such aspects in their internal mobility purposes.

An AI-driven individual career path builder can help acquire the necessary skills through a learning experience platform (LXP). An employee, when looking for new opportunities, can use the tool for a clear understanding of the open positions within their organization and the required skills for each role. AI algorithms analyze an individual's current skill set, match the skills against the job requirements, emphasize the missing ones and advise the appropriate courses to fill in these skills gaps.

Challenge: Matching The Right Talent To The Right Roles On A Scale

Corporations, training companies and education tech startups are leveraging AI-based tools for workforce skills assessments that help match the right talent to the right roles on a scale.

How does it work? Humans need to describe the skills only once. Then the machine will parse the data by itself. An AI-based algorithm automatically ranks the job-ready skills of every employee, analyzing their profiles and competency matrix.

Thanks to the implementation of AI in learning and development (L&D) and talent management departments, the manager will get a list of candidates with their ranked level of skills. Additionally, the data will be mapped with the competencies the company needs.

Challenge: Ensuring Faster Knowledge Acquisition And Improving Learning Outcomes 

Automatic personalized AI-powered learning path building with targeted content recommendations can help every employee or student in a few ways. For instance, after a learner has passed an initial knowledge check or skills assessment, AI builds a personalized learning path that starts from the most ready-to-learn topic. 

Additionally, while going through the topic, a trainee is offered a series of questions with hints and detailed explanations in case of incorrect answers. So the learners complete a certain number of topics and pass the determined amount of hours. After that, the AI knowledge checker automatically reassesses learners to show what topics they’ve retained.

The materials with which a trainee has done well will go to the mastered category, and the topics where they have struggled will move back to the learning path to be reviewed again.

Challenge: Measuring The Effectiveness Of Training Programs

An AI-driven learning progress tracking tool is able to check whether employees or students are mastering or missing the needed competencies. That measures the impact of learning and optimizes it accordingly.

How does it work? The software aggregates data about trainees’ performances and their grades from a learning management system (LMS), including overall scores and competencies, missing assignments or past due assignments.

An AI-powered progress tracking tool analyzes the progress of every learner based on their individual activities and performance. Educators and L&D teams see the gathered data in a single dashboard and get intuitive reports. Also, the system flags students at risk or low-performing employees, allowing educators and L&D managers to follow up quickly.

Challenge: Forecasting Future Learning Outcomes And Potential Problems

The AI-powered predictive analytics tool gathers data about past and current activity. Based on the gathered data, the software builds patterns of learning behavior for each learner and projects future proficiency for final assessments. The system automatically generates precise reports and sends them to educational staff, so they can uncover pitfalls in a timely manner. As a result of early interventions, learners' success rates and retention increase.

L&D departments and educators use predictive reports to help their employees or students make proficiency gains earlier in the learning cycle and address knowledge gaps. The AI-based system also might provide alerts to inform mentors of events that may require their intervention or a discussion.

In addition to the listed challenges, AI in education can address other issues, such as increasing user retention and course completion rates in language learning or reallocating the time of L&D, HR and educational leaders to meaningful and strategic tasks by passing routine tasks to AI chatbots.

Nowadays, you can experience a billion competing products, and the lion’s share of them promise much but deliver little. Realizing what solution is working and what is not for you is crucial.

When investing in an AI-powered LMS, it is important to get proper consulting from e-learning experts. That will help you understand how to integrate AI into your current LMS or maybe create an LMS from scratch.

One of the primary steps is to choose the type of e-learning software that will perfectly suit the target audience and the learning goals, such as AI LMS, LXP, learning mobile or web applications.

Implementing AI features converts a traditional admin-centered LMS into a learner-centered LXP. AI in LXP performs as a recommendation engine, replacing a unified curriculum with personalized learning content. 

The core idea of e-learning mobile and web applications is making the process available anytime and anywhere through personal devices.

To get early results, test easy-to-apply solutions. Additionally, it might be more cost-effective not just to replace your legacy systems with completely new ones but to think about opportunities to utilize them in new environments.

Forbes Technology Council is an invitation-only community for world-class CIOs, CTOs and technology executives. Do I qualify?

Dmitry Baraishuk

  • Editorial Standards
  • Forbes Accolades

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

The PMC website is updating on October 15, 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Springer Nature - PMC COVID-19 Collection

Logo of phenaturepg

Impacts of digital technologies on education and factors influencing schools' digital capacity and transformation: A literature review

Stella timotheou.

1 CYENS Center of Excellence & Cyprus University of Technology (Cyprus Interaction Lab), Cyprus, CYENS Center of Excellence & Cyprus University of Technology, Nicosia-Limassol, Cyprus

Ourania Miliou

Yiannis dimitriadis.

2 Universidad de Valladolid (UVA), Spain, Valladolid, Spain

Sara Villagrá Sobrino

Nikoleta giannoutsou, romina cachia.

3 JRC - Joint Research Centre of the European Commission, Seville, Spain

Alejandra Martínez Monés

Andri ioannou, associated data.

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Digital technologies have brought changes to the nature and scope of education and led education systems worldwide to adopt strategies and policies for ICT integration. The latter brought about issues regarding the quality of teaching and learning with ICTs, especially concerning the understanding, adaptation, and design of the education systems in accordance with current technological trends. These issues were emphasized during the recent COVID-19 pandemic that accelerated the use of digital technologies in education, generating questions regarding digitalization in schools. Specifically, many schools demonstrated a lack of experience and low digital capacity, which resulted in widening gaps, inequalities, and learning losses. Such results have engendered the need for schools to learn and build upon the experience to enhance their digital capacity and preparedness, increase their digitalization levels, and achieve a successful digital transformation. Given that the integration of digital technologies is a complex and continuous process that impacts different actors within the school ecosystem, there is a need to show how these impacts are interconnected and identify the factors that can encourage an effective and efficient change in the school environments. For this purpose, we conducted a non-systematic literature review. The results of the literature review were organized thematically based on the evidence presented about the impact of digital technology on education and the factors that affect the schools’ digital capacity and digital transformation. The findings suggest that ICT integration in schools impacts more than just students’ performance; it affects several other school-related aspects and stakeholders, too. Furthermore, various factors affect the impact of digital technologies on education. These factors are interconnected and play a vital role in the digital transformation process. The study results shed light on how ICTs can positively contribute to the digital transformation of schools and which factors should be considered for schools to achieve effective and efficient change.

Introduction

Digital technologies have brought changes to the nature and scope of education. Versatile and disruptive technological innovations, such as smart devices, the Internet of Things (IoT), artificial intelligence (AI), augmented reality (AR) and virtual reality (VR), blockchain, and software applications have opened up new opportunities for advancing teaching and learning (Gaol & Prasolova-Førland, 2021 ; OECD, 2021 ). Hence, in recent years, education systems worldwide have increased their investment in the integration of information and communication technology (ICT) (Fernández-Gutiérrez et al., 2020 ; Lawrence & Tar, 2018 ) and prioritized their educational agendas to adapt strategies or policies around ICT integration (European Commission, 2019 ). The latter brought about issues regarding the quality of teaching and learning with ICTs (Bates, 2015 ), especially concerning the understanding, adaptation, and design of education systems in accordance with current technological trends (Balyer & Öz, 2018 ). Studies have shown that despite the investment made in the integration of technology in schools, the results have not been promising, and the intended outcomes have not yet been achieved (Delgado et al., 2015 ; Lawrence & Tar, 2018 ). These issues were exacerbated during the COVID-19 pandemic, which forced teaching across education levels to move online (Daniel, 2020 ). Online teaching accelerated the use of digital technologies generating questions regarding the process, the nature, the extent, and the effectiveness of digitalization in schools (Cachia et al., 2021 ; König et al., 2020 ). Specifically, many schools demonstrated a lack of experience and low digital capacity, which resulted in widening gaps, inequalities, and learning losses (Blaskó et al., 2021 ; Di Pietro et al, 2020 ). Such results have engendered the need for schools to learn and build upon the experience in order to enhance their digital capacity (European Commission, 2020 ) and increase their digitalization levels (Costa et al., 2021 ). Digitalization offers possibilities for fundamental improvement in schools (OECD, 2021 ; Rott & Marouane, 2018 ) and touches many aspects of a school’s development (Delcker & Ifenthaler, 2021 ) . However, it is a complex process that requires large-scale transformative changes beyond the technical aspects of technology and infrastructure (Pettersson, 2021 ). Namely, digitalization refers to “ a series of deep and coordinated culture, workforce, and technology shifts and operating models ” (Brooks & McCormack, 2020 , p. 3) that brings cultural, organizational, and operational change through the integration of digital technologies (JISC, 2020 ). A successful digital transformation requires that schools increase their digital capacity levels, establishing the necessary “ culture, policies, infrastructure as well as digital competence of students and staff to support the effective integration of technology in teaching and learning practices ” (Costa et al, 2021 , p.163).

Given that the integration of digital technologies is a complex and continuous process that impacts different actors within the school ecosystem (Eng, 2005 ), there is a need to show how the different elements of the impact are interconnected and to identify the factors that can encourage an effective and efficient change in the school environment. To address the issues outlined above, we formulated the following research questions:

a) What is the impact of digital technologies on education?

b) Which factors might affect a school’s digital capacity and transformation?

In the present investigation, we conducted a non-systematic literature review of publications pertaining to the impact of digital technologies on education and the factors that affect a school’s digital capacity and transformation. The results of the literature review were organized thematically based on the evidence presented about the impact of digital technology on education and the factors which affect the schools’ digital capacity and digital transformation.

Methodology

The non-systematic literature review presented herein covers the main theories and research published over the past 17 years on the topic. It is based on meta-analyses and review papers found in scholarly, peer-reviewed content databases and other key studies and reports related to the concepts studied (e.g., digitalization, digital capacity) from professional and international bodies (e.g., the OECD). We searched the Scopus database, which indexes various online journals in the education sector with an international scope, to collect peer-reviewed academic papers. Furthermore, we used an all-inclusive Google Scholar search to include relevant key terms or to include studies found in the reference list of the peer-reviewed papers, and other key studies and reports related to the concepts studied by professional and international bodies. Lastly, we gathered sources from the Publications Office of the European Union ( https://op.europa.eu/en/home ); namely, documents that refer to policies related to digital transformation in education.

Regarding search terms, we first searched resources on the impact of digital technologies on education by performing the following search queries: “impact” OR “effects” AND “digital technologies” AND “education”, “impact” OR “effects” AND “ICT” AND “education”. We further refined our results by adding the terms “meta-analysis” and “review” or by adjusting the search options based on the features of each database to avoid collecting individual studies that would provide limited contributions to a particular domain. We relied on meta-analyses and review studies as these consider the findings of multiple studies to offer a more comprehensive view of the research in a given area (Schuele & Justice, 2006 ). Specifically, meta-analysis studies provided quantitative evidence based on statistically verifiable results regarding the impact of educational interventions that integrate digital technologies in school classrooms (Higgins et al., 2012 ; Tolani-Brown et al., 2011 ).

However, quantitative data does not offer explanations for the challenges or difficulties experienced during ICT integration in learning and teaching (Tolani-Brown et al., 2011 ). To fill this gap, we analyzed literature reviews and gathered in-depth qualitative evidence of the benefits and implications of technology integration in schools. In the analysis presented herein, we also included policy documents and reports from professional and international bodies and governmental reports, which offered useful explanations of the key concepts of this study and provided recent evidence on digital capacity and transformation in education along with policy recommendations. The inclusion and exclusion criteria that were considered in this study are presented in Table ​ Table1 1 .

Inclusion and exclusion criteria for the selection of resources on the impact of digital technologies on education

Inclusion criteriaExclusion criteria

• Published in 2005 or later

• Review and meta-analysis studies

• Formal education K-12

• Peer-reviewed articles

• Articles in English

• Reports from professional/international bodies

• Governmental reports

• Book chapters

• Ph.D. dissertations and theses

• Conference poster papers

• Conference papers without proceedings

• Resources on higher education

• Resources on pre-school education

• Individual studies

To ensure a reliable extraction of information from each study and assist the research synthesis we selected the study characteristics of interest (impact) and constructed coding forms. First, an overview of the synthesis was provided by the principal investigator who described the processes of coding, data entry, and data management. The coders followed the same set of instructions but worked independently. To ensure a common understanding of the process between coders, a sample of ten studies was tested. The results were compared, and the discrepancies were identified and resolved. Additionally, to ensure an efficient coding process, all coders participated in group meetings to discuss additions, deletions, and modifications (Stock, 1994 ). Due to the methodological diversity of the studied documents we began to synthesize the literature review findings based on similar study designs. Specifically, most of the meta-analysis studies were grouped in one category due to the quantitative nature of the measured impact. These studies tended to refer to student achievement (Hattie et al., 2014 ). Then, we organized the themes of the qualitative studies in several impact categories. Lastly, we synthesized both review and meta-analysis data across the categories. In order to establish a collective understanding of the concept of impact, we referred to a previous impact study by Balanskat ( 2009 ) which investigated the impact of technology in primary schools. In this context, the impact had a more specific ICT-related meaning and was described as “ a significant influence or effect of ICT on the measured or perceived quality of (parts of) education ” (Balanskat, 2009 , p. 9). In the study presented herein, the main impacts are in relation to learning and learners, teaching, and teachers, as well as other key stakeholders who are directly or indirectly connected to the school unit.

The study’s results identified multiple dimensions of the impact of digital technologies on students’ knowledge, skills, and attitudes; on equality, inclusion, and social integration; on teachers’ professional and teaching practices; and on other school-related aspects and stakeholders. The data analysis indicated various factors that might affect the schools’ digital capacity and transformation, such as digital competencies, the teachers’ personal characteristics and professional development, as well as the school’s leadership and management, administration, infrastructure, etc. The impacts and factors found in the literature review are presented below.

Impacts of digital technologies on students’ knowledge, skills, attitudes, and emotions

The impact of ICT use on students’ knowledge, skills, and attitudes has been investigated early in the literature. Eng ( 2005 ) found a small positive effect between ICT use and students' learning. Specifically, the author reported that access to computer-assisted instruction (CAI) programs in simulation or tutorial modes—used to supplement rather than substitute instruction – could enhance student learning. The author reported studies showing that teachers acknowledged the benefits of ICT on pupils with special educational needs; however, the impact of ICT on students' attainment was unclear. Balanskat et al. ( 2006 ) found a statistically significant positive association between ICT use and higher student achievement in primary and secondary education. The authors also reported improvements in the performance of low-achieving pupils. The use of ICT resulted in further positive gains for students, namely increased attention, engagement, motivation, communication and process skills, teamwork, and gains related to their behaviour towards learning. Evidence from qualitative studies showed that teachers, students, and parents recognized the positive impact of ICT on students' learning regardless of their competence level (strong/weak students). Punie et al. ( 2006 ) documented studies that showed positive results of ICT-based learning for supporting low-achieving pupils and young people with complex lives outside the education system. Liao et al. ( 2007 ) reported moderate positive effects of computer application instruction (CAI, computer simulations, and web-based learning) over traditional instruction on primary school student's achievement. Similarly, Tamim et al. ( 2011 ) reported small to moderate positive effects between the use of computer technology (CAI, ICT, simulations, computer-based instruction, digital and hypermedia) and student achievement in formal face-to-face classrooms compared to classrooms that did not use technology. Jewitt et al., ( 2011 ) found that the use of learning platforms (LPs) (virtual learning environments, management information systems, communication technologies, and information- and resource-sharing technologies) in schools allowed primary and secondary students to access a wider variety of quality learning resources, engage in independent and personalized learning, and conduct self- and peer-review; LPs also provide opportunities for teacher assessment and feedback. Similar findings were reported by Fu ( 2013 ), who documented a list of benefits and opportunities of ICT use. According to the author, the use of ICTs helps students access digital information and course content effectively and efficiently, supports student-centered and self-directed learning, as well as the development of a creative learning environment where more opportunities for critical thinking skills are offered, and promotes collaborative learning in a distance-learning environment. Higgins et al. ( 2012 ) found consistent but small positive associations between the use of technology and learning outcomes of school-age learners (5–18-year-olds) in studies linking the provision and use of technology with attainment. Additionally, Chauhan ( 2017 ) reported a medium positive effect of technology on the learning effectiveness of primary school students compared to students who followed traditional learning instruction.

The rise of mobile technologies and hardware devices instigated investigations into their impact on teaching and learning. Sung et al. ( 2016 ) reported a moderate effect on students' performance from the use of mobile devices in the classroom compared to the use of desktop computers or the non-use of mobile devices. Schmid et al. ( 2014 ) reported medium–low to low positive effects of technology integration (e.g., CAI, ICTs) in the classroom on students' achievement and attitude compared to not using technology or using technology to varying degrees. Tamim et al. ( 2015 ) found a low statistically significant effect of the use of tablets and other smart devices in educational contexts on students' achievement outcomes. The authors suggested that tablets offered additional advantages to students; namely, they reported improvements in students’ notetaking, organizational and communication skills, and creativity. Zheng et al. ( 2016 ) reported a small positive effect of one-to-one laptop programs on students’ academic achievement across subject areas. Additional reported benefits included student-centered, individualized, and project-based learning enhanced learner engagement and enthusiasm. Additionally, the authors found that students using one-to-one laptop programs tended to use technology more frequently than in non-laptop classrooms, and as a result, they developed a range of skills (e.g., information skills, media skills, technology skills, organizational skills). Haßler et al. ( 2016 ) found that most interventions that included the use of tablets across the curriculum reported positive learning outcomes. However, from 23 studies, five reported no differences, and two reported a negative effect on students' learning outcomes. Similar results were indicated by Kalati and Kim ( 2022 ) who investigated the effect of touchscreen technologies on young students’ learning. Specifically, from 53 studies, 34 advocated positive effects of touchscreen devices on children’s learning, 17 obtained mixed findings and two studies reported negative effects.

More recently, approaches that refer to the impact of gamification with the use of digital technologies on teaching and learning were also explored. A review by Pan et al. ( 2022 ) that examined the role of learning games in fostering mathematics education in K-12 settings, reported that gameplay improved students’ performance. Integration of digital games in teaching was also found as a promising pedagogical practice in STEM education that could lead to increased learning gains (Martinez et al., 2022 ; Wang et al., 2022 ). However, although Talan et al. ( 2020 ) reported a medium effect of the use of educational games (both digital and non-digital) on academic achievement, the effect of non-digital games was higher.

Over the last two years, the effects of more advanced technologies on teaching and learning were also investigated. Garzón and Acevedo ( 2019 ) found that AR applications had a medium effect on students' learning outcomes compared to traditional lectures. Similarly, Garzón et al. ( 2020 ) showed that AR had a medium impact on students' learning gains. VR applications integrated into various subjects were also found to have a moderate effect on students’ learning compared to control conditions (traditional classes, e.g., lectures, textbooks, and multimedia use, e.g., images, videos, animation, CAI) (Chen et al., 2022b ). Villena-Taranilla et al. ( 2022 ) noted the moderate effect of VR technologies on students’ learning when these were applied in STEM disciplines. In the same meta-analysis, Villena-Taranilla et al. ( 2022 ) highlighted the role of immersive VR, since its effect on students’ learning was greater (at a high level) across educational levels (K-6) compared to semi-immersive and non-immersive integrations. In another meta-analysis study, the effect size of the immersive VR was small and significantly differentiated across educational levels (Coban et al., 2022 ). The impact of AI on education was investigated by Su and Yang ( 2022 ) and Su et al. ( 2022 ), who showed that this technology significantly improved students’ understanding of AI computer science and machine learning concepts.

It is worth noting that the vast majority of studies referred to learning gains in specific subjects. Specifically, several studies examined the impact of digital technologies on students’ literacy skills and reported positive effects on language learning (Balanskat et al., 2006 ; Grgurović et al., 2013 ; Friedel et al., 2013 ; Zheng et al., 2016 ; Chen et al., 2022b ; Savva et al., 2022 ). Also, several studies documented positive effects on specific language learning areas, namely foreign language learning (Kao, 2014 ), writing (Higgins et al., 2012 ; Wen & Walters, 2022 ; Zheng et al., 2016 ), as well as reading and comprehension (Cheung & Slavin, 2011 ; Liao et al., 2007 ; Schwabe et al., 2022 ). ICTs were also found to have a positive impact on students' performance in STEM (science, technology, engineering, and mathematics) disciplines (Arztmann et al., 2022 ; Bado, 2022 ; Villena-Taranilla et al., 2022 ; Wang et al., 2022 ). Specifically, a number of studies reported positive impacts on students’ achievement in mathematics (Balanskat et al., 2006 ; Hillmayr et al., 2020 ; Li & Ma, 2010 ; Pan et al., 2022 ; Ran et al., 2022 ; Verschaffel et al., 2019 ; Zheng et al., 2016 ). Furthermore, studies documented positive effects of ICTs on science learning (Balanskat et al., 2006 ; Liao et al., 2007 ; Zheng et al., 2016 ; Hillmayr et al., 2020 ; Kalemkuş & Kalemkuş, 2022 ; Lei et al., 2022a ). Çelik ( 2022 ) also noted that computer simulations can help students understand learning concepts related to science. Furthermore, some studies documented that the use of ICTs had a positive impact on students’ achievement in other subjects, such as geography, history, music, and arts (Chauhan, 2017 ; Condie & Munro, 2007 ), and design and technology (Balanskat et al., 2006 ).

More specific positive learning gains were reported in a number of skills, e.g., problem-solving skills and pattern exploration skills (Higgins et al., 2012 ), metacognitive learning outcomes (Verschaffel et al., 2019 ), literacy skills, computational thinking skills, emotion control skills, and collaborative inquiry skills (Lu et al., 2022 ; Su & Yang, 2022 ; Su et al., 2022 ). Additionally, several investigations have reported benefits from the use of ICT on students’ creativity (Fielding & Murcia, 2022 ; Liu et al., 2022 ; Quah & Ng, 2022 ). Lastly, digital technologies were also found to be beneficial for enhancing students’ lifelong learning skills (Haleem et al., 2022 ).

Apart from gaining knowledge and skills, studies also reported improvement in motivation and interest in mathematics (Higgins et. al., 2019 ; Fadda et al., 2022 ) and increased positive achievement emotions towards several subjects during interventions using educational games (Lei et al., 2022a ). Chen et al. ( 2022a ) also reported a small but positive effect of digital health approaches in bullying and cyberbullying interventions with K-12 students, demonstrating that technology-based approaches can help reduce bullying and related consequences by providing emotional support, empowerment, and change of attitude. In their meta-review study, Su et al. ( 2022 ) also documented that AI technologies effectively strengthened students’ attitudes towards learning. In another meta-analysis, Arztmann et al. ( 2022 ) reported positive effects of digital games on motivation and behaviour towards STEM subjects.

Impacts of digital technologies on equality, inclusion and social integration

Although most of the reviewed studies focused on the impact of ICTs on students’ knowledge, skills, and attitudes, reports were also made on other aspects in the school context, such as equality, inclusion, and social integration. Condie and Munro ( 2007 ) documented research interventions investigating how ICT can support pupils with additional or special educational needs. While those interventions were relatively small scale and mostly based on qualitative data, their findings indicated that the use of ICTs enabled the development of communication, participation, and self-esteem. A recent meta-analysis (Baragash et al., 2022 ) with 119 participants with different disabilities, reported a significant overall effect size of AR on their functional skills acquisition. Koh’s meta-analysis ( 2022 ) also revealed that students with intellectual and developmental disabilities improved their competence and performance when they used digital games in the lessons.

Istenic Starcic and Bagon ( 2014 ) found that the role of ICT in inclusion and the design of pedagogical and technological interventions was not sufficiently explored in educational interventions with people with special needs; however, some benefits of ICT use were found in students’ social integration. The issue of gender and technology use was mentioned in a small number of studies. Zheng et al. ( 2016 ) reported a statistically significant positive interaction between one-to-one laptop programs and gender. Specifically, the results showed that girls and boys alike benefitted from the laptop program, but the effect on girls’ achievement was smaller than that on boys’. Along the same lines, Arztmann et al. ( 2022 ) reported no difference in the impact of game-based learning between boys and girls, arguing that boys and girls equally benefited from game-based interventions in STEM domains. However, results from a systematic review by Cussó-Calabuig et al. ( 2018 ) found limited and low-quality evidence on the effects of intensive use of computers on gender differences in computer anxiety, self-efficacy, and self-confidence. Based on their view, intensive use of computers can reduce gender differences in some areas and not in others, depending on contextual and implementation factors.

Impacts of digital technologies on teachers’ professional and teaching practices

Various research studies have explored the impact of ICT on teachers’ instructional practices and student assessment. Friedel et al. ( 2013 ) found that the use of mobile devices by students enabled teachers to successfully deliver content (e.g., mobile serious games), provide scaffolding, and facilitate synchronous collaborative learning. The integration of digital games in teaching and learning activities also gave teachers the opportunity to study and apply various pedagogical practices (Bado, 2022 ). Specifically, Bado ( 2022 ) found that teachers who implemented instructional activities in three stages (pre-game, game, and post-game) maximized students’ learning outcomes and engagement. For instance, during the pre-game stage, teachers focused on lectures and gameplay training, at the game stage teachers provided scaffolding on content, addressed technical issues, and managed the classroom activities. During the post-game stage, teachers organized activities for debriefing to ensure that the gameplay had indeed enhanced students’ learning outcomes.

Furthermore, ICT can increase efficiency in lesson planning and preparation by offering possibilities for a more collaborative approach among teachers. The sharing of curriculum plans and the analysis of students’ data led to clearer target settings and improvements in reporting to parents (Balanskat et al., 2006 ).

Additionally, the use and application of digital technologies in teaching and learning were found to enhance teachers’ digital competence. Balanskat et al. ( 2006 ) documented studies that revealed that the use of digital technologies in education had a positive effect on teachers’ basic ICT skills. The greatest impact was found on teachers with enough experience in integrating ICTs in their teaching and/or who had recently participated in development courses for the pedagogical use of technologies in teaching. Punie et al. ( 2006 ) reported that the provision of fully equipped multimedia portable computers and the development of online teacher communities had positive impacts on teachers’ confidence and competence in the use of ICTs.

Moreover, online assessment via ICTs benefits instruction. In particular, online assessments support the digitalization of students’ work and related logistics, allow teachers to gather immediate feedback and readjust to new objectives, and support the improvement of the technical quality of tests by providing more accurate results. Additionally, the capabilities of ICTs (e.g., interactive media, simulations) create new potential methods of testing specific skills, such as problem-solving and problem-processing skills, meta-cognitive skills, creativity and communication skills, and the ability to work productively in groups (Punie et al., 2006 ).

Impacts of digital technologies on other school-related aspects and stakeholders

There is evidence that the effective use of ICTs and the data transmission offered by broadband connections help improve administration (Balanskat et al., 2006 ). Specifically, ICTs have been found to provide better management systems to schools that have data gathering procedures in place. Condie and Munro ( 2007 ) reported impacts from the use of ICTs in schools in the following areas: attendance monitoring, assessment records, reporting to parents, financial management, creation of repositories for learning resources, and sharing of information amongst staff. Such data can be used strategically for self-evaluation and monitoring purposes which in turn can result in school improvements. Additionally, they reported that online access to other people with similar roles helped to reduce headteachers’ isolation by offering them opportunities to share insights into the use of ICT in learning and teaching and how it could be used to support school improvement. Furthermore, ICTs provided more efficient and successful examination management procedures, namely less time-consuming reporting processes compared to paper-based examinations and smooth communications between schools and examination authorities through electronic data exchange (Punie et al., 2006 ).

Zheng et al. ( 2016 ) reported that the use of ICTs improved home-school relationships. Additionally, Escueta et al. ( 2017 ) reported several ICT programs that had improved the flow of information from the school to parents. Particularly, they documented that the use of ICTs (learning management systems, emails, dedicated websites, mobile phones) allowed for personalized and customized information exchange between schools and parents, such as attendance records, upcoming class assignments, school events, and students’ grades, which generated positive results on students’ learning outcomes and attainment. Such information exchange between schools and families prompted parents to encourage their children to put more effort into their schoolwork.

The above findings suggest that the impact of ICT integration in schools goes beyond students’ performance in school subjects. Specifically, it affects a number of school-related aspects, such as equality and social integration, professional and teaching practices, and diverse stakeholders. In Table ​ Table2, 2 , we summarize the different impacts of digital technologies on school stakeholders based on the literature review, while in Table ​ Table3 3 we organized the tools/platforms and practices/policies addressed in the meta-analyses, literature reviews, EU reports, and international bodies included in the manuscript.

The impact of digital technologies on schools’ stakeholders based on the literature review

ImpactsReferences
Students
  Knowledge, skills, attitudes, and emotions
    • Learning gains from the use of ICTs across the curriculumEng, ; Balanskat et al., ; Liao et al., ; Tamim et al., ; Higgins et al., ; Chauhan, ; Sung et al., ; Schmid et al., ; Tamim et al., ; Zheng et al., ; Haßler et al., ; Kalati & Kim, ; Martinez et al., ; Talan et al., ; Panet al., ; Garzón & Acevedo, ; Garzón et al., ; Villena-Taranilla, et al., ; Coban et al.,
    • Positive learning gains from the use of ICTs in specific school subjects (e.g., mathematics, literacy, language, science)Arztmann et al., ; Villena-Taranilla, et al., ; Chen et al., ; Balanskat et al., ; Grgurović, et al., ; Friedel et al., ; Zheng et al., ; Savva et al., ; Kao, ; Higgins et al., ; Wen & Walters, ; Liao et al., ; Cheung & Slavin, ; Schwabe et al., ; Li & Ma, ; Verschaffel et al., ; Ran et al., ; Liao et al., ; Hillmayr et al., ; Kalemkuş & Kalemkuş, ; Lei et al., ; Condie & Munro, ; Chauhan, ; Bado, ; Wang et al., ; Pan et al.,
    • Positive learning gains for special needs students and low-achieving studentsEng, ; Balanskat et al., ; Punie et al., ; Koh,
    • Oportunities to develop a range of skills (e.g., subject-related skills, communication skills, negotiation skills, emotion control skills, organizational skills, critical thinking skills, creativity, metacognitive skills, life, and career skills)Balanskat et al., ; Fu, ; Tamim et al., ; Zheng et al., ; Higgins et al., ; Verschaffel et al., ; Su & Yang, ; Su et al., ; Lu et al., ; Liu et al., ; Quah & Ng, ; Fielding & Murcia, ; Tang et al., ; Haleem et al.,
    • Oportunities to develop digital skills (e.g., information skills, media skills, ICT skills)Zheng et al., ; Su & Yang, ; Lu et al., ; Su et al.,
    • Positive attitudes and behaviours towards ICTs, positive emotions (e.g., increased interest, motivation, attention, engagement, confidence, reduced anxiety, positive achievement emotions, reduction in bullying and cyberbullying)Balanskat et al., ; Schmid et al., ; Zheng et al., ; Fadda et al., ; Higgins et al., ; Chen et al., ; Lei et al., ; Arztmann et al., ; Su et al.,
  Learning experience
    • Enhance access to resourcesJewitt et al., ; Fu,
    • Opportunities to experience various learning practices (e.g., active learning, learner-centred learning, independent and personalized learning, collaborative learning, self-directed learning, self- and peer-review)Jewitt et al., ; Fu,
    • Improved access to teacher assessment and feedbackJewitt et al.,
Equality, inclusion, and social integration
    • Improved communication, functional skills, participation, self-esteem, and engagement of special needs studentsCondie & Munro, ; Baragash et al., ; Koh,
    • Enhanced social interaction for students in general and for students with learning difficultiesIstenic Starcic & Bagon,
    • Benefits for both girls and boysZheng et al., ; Arztmann et al.,
Teachers
  Professional practice
    • Development of digital competenceBalanskat et al.,
    • Positive attitudes and behaviours towards ICTs (e.g., increased confidence)Punie et al., ,
    • Formalized collaborative planning between teachersBalanskat et al.,
    • Improved reporting to parentsBalanskat et al.,
Teaching practice
    • Efficiency in lesson planning and preparationBalanskat et al.,
    • Facilitate assessment through the provision of immediate feedbackPunie et al.,
    • Improvements in the technical quality of testsPunie et al.,
    • New methods of testing specific skills (e.g., problem-solving skills, meta-cognitive skills)Punie et al.,
    • Successful content delivery and lessonsFriedel et al.,
    • Application of different instructional practices (e.g., scaffolding, synchronous collaborative learning, online learning, blended learning, hybrid learning)Friedel et al., ; Bado, ; Kazu & Yalçin, ; Ulum,
Administrators
  Data-based decision-making
    • Improved data-gathering processesBalanskat et al.,
    • Support monitoring and evaluation processes (e.g., attendance monitoring, financial management, assessment records)Condie & Munro,
Organizational processes
    • Access to learning resources via the creation of repositoriesCondie & Munro,
    • Information sharing between school staffCondie & Munro,
    • Smooth communications with external authorities (e.g., examination results)Punie et al.,
    • Efficient and successful examination management proceduresPunie et al.,
  Home-school communication
    • Support reporting to parentsCondie & Munro,
    • Improved flow of communication between the school and parents (e.g., customized and personalized communications)Escueta et al.,
School leaders
  Professional practice
    • Reduced headteacher isolationCondie & Munro,
    • Improved access to insights about practices for school improvementCondie & Munro,
Parents
  Home-school relationships
    • Improved home-school relationshipsZheng et al.,
    • Increased parental involvement in children’s school lifeEscueta et al.,

Tools/platforms and practices/policies addressed in the meta-analyses, literature reviews, EU reports, and international bodies included in the manuscript

Technologies/tools/practices/policiesReferences
ICT general – various types of technologies

Eng, (review)

Moran et al., (meta-analysis)

Balanskat et al., (report)

Punie et al., (review)

Fu, (review)

Higgins et al., (report)

Chauhan, (meta-analysis)

Schmid et al., (meta-analysis)

Grgurović et al., (meta-analysis)

Higgins et al., (meta-analysis)

Wen & Walters, (meta-analysis)

Cheung & Slavin, (meta-analysis)

Li & Ma, (meta-analysis)

Hillmayr et al., (meta-analysis)

Verschaffel et al., (systematic review)

Ran et al., (meta-analysis)

Fielding & Murcia, (systematic review)

Tang et al., (review)

Haleem et al., (review)

Condie & Munro, (review)

Underwood, (review)

Istenic Starcic & Bagon, (review)

Cussó-Calabuig et al., (systematic review)

Escueta et al. ( ) (review)

Archer et al., (meta-analysis)

Lee et al., (meta-analysis)

Delgado et al., (review)

Di Pietro et al., (report)

Practices/policies on schools’ digital transformation

Bingimlas, (review)

Hardman, (review)

Hattie, (synthesis of multiple meta-analysis)

Trucano, (book-Knowledge maps)

Ređep, (policy study)

Conrads et al, (report)

European Commission, (EU report)

Elkordy & Lovinelli, (book chapter)

Eurydice, (EU report)

Vuorikari et al., (JRC paper)

Sellar, (review)

European Commission, (EU report)

OECD, (international paper)

Computer-assisted instruction, computer simulations, activeboards, and web-based learning

Liao et al., (meta-analysis)

Tamim et al., (meta-analysis)

Çelik, (review)

Moran et al., (meta-analysis)

Eng, (review)

Learning platforms (LPs) (virtual learning environments, management information systems, communication technologies and information and resource sharing technologies)Jewitt et al., (report)
Mobile devices—touch screens (smart devices, tablets, laptops)

Sung et al., (meta-analysis and research synthesis)

Tamim et al., (meta-analysis)

Tamim et al., (systematic review and meta-analysis)

Zheng et al., (meta-analysis and research synthesis)

Haßler et al., (review)

Kalati & Kim, (systematic review)

Friedel et al., (meta-analysis and review)

Chen et al., (meta-analysis)

Schwabe et al., (meta-analysis)

Punie et al., (review)

Digital games (various types e.g., adventure, serious; various domains e.g., history, science)

Wang et al., (meta-analysis)

Arztmann et al., (meta-analysis)

Martinez et al., (systematic review)

Talan et al., (meta-analysis)

Pan et al., (systematic review)

Chen et al., (meta-analysis)

Kao, (meta-analysis)

Fadda et al., (meta-analysis)

Lu et al., (meta-analysis)

Lei et al., (meta-analysis)

Koh, (meta-analysis)

Bado, (review)

Augmented reality (AR)

Garzón & Acevedo, (meta-analysis)

Garzón et al., (meta-analysis and research synthesis)

Kalemkuş & Kalemkuş, (meta-analysis)

Baragash et al., (meta-analysis)

Virtual reality (VR)

Immersive virtual reality (IVR)

Villena-Taranilla et al., (meta-analysis)

Chen et al., (meta-analysis)

Coban et al., (meta-analysis)

Artificial intelligence (AI) and robotics

Su & Yang, (review)

Su et al., (meta review)

Online learning/elearning

Ulum, (meta-analysis)

Cheok & Wong, (review)

Blended learningGrgurović et al., (meta-analysis)
Synchronous parallel participationFriedel et al., (meta-analysis and review)
Electronic books/digital storytelling

Savva et al., (meta-analysis)

Quah & Ng, (systematic review)

Multimedia technologyLiu et al., (meta-analysis)
Hybrid learningKazu & Yalçin, (meta-analysis)

Additionally, based on the results of the literature review, there are many types of digital technologies with different affordances (see, for example, studies on VR vs Immersive VR), which evolve over time (e.g. starting from CAIs in 2005 to Augmented and Virtual reality 2020). Furthermore, these technologies are linked to different pedagogies and policy initiatives, which are critical factors in the study of impact. Table ​ Table3 3 summarizes the different tools and practices that have been used to examine the impact of digital technologies on education since 2005 based on the review results.

Factors that affect the integration of digital technologies

Although the analysis of the literature review demonstrated different impacts of the use of digital technology on education, several authors highlighted the importance of various factors, besides the technology itself, that affect this impact. For example, Liao et al. ( 2007 ) suggested that future studies should carefully investigate which factors contribute to positive outcomes by clarifying the exact relationship between computer applications and learning. Additionally, Haßler et al., ( 2016 ) suggested that the neutral findings regarding the impact of tablets on students learning outcomes in some of the studies included in their review should encourage educators, school leaders, and school officials to further investigate the potential of such devices in teaching and learning. Several other researchers suggested that a number of variables play a significant role in the impact of ICTs on students’ learning that could be attributed to the school context, teaching practices and professional development, the curriculum, and learners’ characteristics (Underwood, 2009 ; Tamim et al., 2011 ; Higgins et al., 2012 ; Archer et al., 2014 ; Sung et al., 2016 ; Haßler et al., 2016 ; Chauhan, 2017 ; Lee et al., 2020 ; Tang et al., 2022 ).

Digital competencies

One of the most common challenges reported in studies that utilized digital tools in the classroom was the lack of students’ skills on how to use them. Fu ( 2013 ) found that students’ lack of technical skills is a barrier to the effective use of ICT in the classroom. Tamim et al. ( 2015 ) reported that students faced challenges when using tablets and smart mobile devices, associated with the technical issues or expertise needed for their use and the distracting nature of the devices and highlighted the need for teachers’ professional development. Higgins et al. ( 2012 ) reported that skills training about the use of digital technologies is essential for learners to fully exploit the benefits of instruction.

Delgado et al. ( 2015 ), meanwhile, reported studies that showed a strong positive association between teachers’ computer skills and students’ use of computers. Teachers’ lack of ICT skills and familiarization with technologies can become a constraint to the effective use of technology in the classroom (Balanskat et al., 2006 ; Delgado et al., 2015 ).

It is worth noting that the way teachers are introduced to ICTs affects the impact of digital technologies on education. Previous studies have shown that teachers may avoid using digital technologies due to limited digital skills (Balanskat, 2006 ), or they prefer applying “safe” technologies, namely technologies that their own teachers used and with which they are familiar (Condie & Munro, 2007 ). In this regard, the provision of digital skills training and exposure to new digital tools might encourage teachers to apply various technologies in their lessons (Condie & Munro, 2007 ). Apart from digital competence, technical support in the school setting has also been shown to affect teachers’ use of technology in their classrooms (Delgado et al., 2015 ). Ferrari et al. ( 2011 ) found that while teachers’ use of ICT is high, 75% stated that they needed more institutional support and a shift in the mindset of educational actors to achieve more innovative teaching practices. The provision of support can reduce time and effort as well as cognitive constraints, which could cause limited ICT integration in the school lessons by teachers (Escueta et al., 2017 ).

Teachers’ personal characteristics, training approaches, and professional development

Teachers’ personal characteristics and professional development affect the impact of digital technologies on education. Specifically, Cheok and Wong ( 2015 ) found that teachers’ personal characteristics (e.g., anxiety, self-efficacy) are associated with their satisfaction and engagement with technology. Bingimlas ( 2009 ) reported that lack of confidence, resistance to change, and negative attitudes in using new technologies in teaching are significant determinants of teachers’ levels of engagement in ICT. The same author reported that the provision of technical support, motivation support (e.g., awards, sufficient time for planning), and training on how technologies can benefit teaching and learning can eliminate the above barriers to ICT integration. Archer et al. ( 2014 ) found that comfort levels in using technology are an important predictor of technology integration and argued that it is essential to provide teachers with appropriate training and ongoing support until they are comfortable with using ICTs in the classroom. Hillmayr et al. ( 2020 ) documented that training teachers on ICT had an important effecton students’ learning.

According to Balanskat et al. ( 2006 ), the impact of ICTs on students’ learning is highly dependent on the teachers’ capacity to efficiently exploit their application for pedagogical purposes. Results obtained from the Teaching and Learning International Survey (TALIS) (OECD, 2021 ) revealed that although schools are open to innovative practices and have the capacity to adopt them, only 39% of teachers in the European Union reported that they are well or very well prepared to use digital technologies for teaching. Li and Ma ( 2010 ) and Hardman ( 2019 ) showed that the positive effect of technology on students’ achievement depends on the pedagogical practices used by teachers. Schmid et al. ( 2014 ) reported that learning was best supported when students were engaged in active, meaningful activities with the use of technological tools that provided cognitive support. Tamim et al. ( 2015 ) compared two different pedagogical uses of tablets and found a significant moderate effect when the devices were used in a student-centered context and approach rather than within teacher-led environments. Similarly, Garzón and Acevedo ( 2019 ) and Garzón et al. ( 2020 ) reported that the positive results from the integration of AR applications could be attributed to the existence of different variables which could influence AR interventions (e.g., pedagogical approach, learning environment, and duration of the intervention). Additionally, Garzón et al. ( 2020 ) suggested that the pedagogical resources that teachers used to complement their lectures and the pedagogical approaches they applied were crucial to the effective integration of AR on students’ learning gains. Garzón and Acevedo ( 2019 ) also emphasized that the success of a technology-enhanced intervention is based on both the technology per se and its characteristics and on the pedagogical strategies teachers choose to implement. For instance, their results indicated that the collaborative learning approach had the highest impact on students’ learning gains among other approaches (e.g., inquiry-based learning, situated learning, or project-based learning). Ran et al. ( 2022 ) also found that the use of technology to design collaborative and communicative environments showed the largest moderator effects among the other approaches.

Hattie ( 2008 ) reported that the effective use of computers is associated with training teachers in using computers as a teaching and learning tool. Zheng et al. ( 2016 ) noted that in addition to the strategies teachers adopt in teaching, ongoing professional development is also vital in ensuring the success of technology implementation programs. Sung et al. ( 2016 ) found that research on the use of mobile devices to support learning tends to report that the insufficient preparation of teachers is a major obstacle in implementing effective mobile learning programs in schools. Friedel et al. ( 2013 ) found that providing training and support to teachers increased the positive impact of the interventions on students’ learning gains. Trucano ( 2005 ) argued that positive impacts occur when digital technologies are used to enhance teachers’ existing pedagogical philosophies. Higgins et al. ( 2012 ) found that the types of technologies used and how they are used could also affect students’ learning. The authors suggested that training and professional development of teachers that focuses on the effective pedagogical use of technology to support teaching and learning is an important component of successful instructional approaches (Higgins et al., 2012 ). Archer et al. ( 2014 ) found that studies that reported ICT interventions during which teachers received training and support had moderate positive effects on students’ learning outcomes, which were significantly higher than studies where little or no detail about training and support was mentioned. Fu ( 2013 ) reported that the lack of teachers’ knowledge and skills on the technical and instructional aspects of ICT use in the classroom, in-service training, pedagogy support, technical and financial support, as well as the lack of teachers’ motivation and encouragement to integrate ICT on their teaching were significant barriers to the integration of ICT in education.

School leadership and management

Management and leadership are important cornerstones in the digital transformation process (Pihir et al., 2018 ). Zheng et al. ( 2016 ) documented leadership among the factors positively affecting the successful implementation of technology integration in schools. Strong leadership, strategic planning, and systematic integration of digital technologies are prerequisites for the digital transformation of education systems (Ređep, 2021 ). Management and leadership play a significant role in formulating policies that are translated into practice and ensure that developments in ICT become embedded into the life of the school and in the experiences of staff and pupils (Condie & Munro, 2007 ). Policy support and leadership must include the provision of an overall vision for the use of digital technologies in education, guidance for students and parents, logistical support, as well as teacher training (Conrads et al., 2017 ). Unless there is a commitment throughout the school, with accountability for progress at key points, it is unlikely for ICT integration to be sustained or become part of the culture (Condie & Munro, 2007 ). To achieve this, principals need to adopt and promote a whole-institution strategy and build a strong mutual support system that enables the school’s technological maturity (European Commission, 2019 ). In this context, school culture plays an essential role in shaping the mindsets and beliefs of school actors towards successful technology integration. Condie and Munro ( 2007 ) emphasized the importance of the principal’s enthusiasm and work as a source of inspiration for the school staff and the students to cultivate a culture of innovation and establish sustainable digital change. Specifically, school leaders need to create conditions in which the school staff is empowered to experiment and take risks with technology (Elkordy & Lovinelli, 2020 ).

In order for leaders to achieve the above, it is important to develop capacities for learning and leading, advocating professional learning, and creating support systems and structures (European Commission, 2019 ). Digital technology integration in education systems can be challenging and leadership needs guidance to achieve it. Such guidance can be introduced through the adoption of new methods and techniques in strategic planning for the integration of digital technologies (Ređep, 2021 ). Even though the role of leaders is vital, the relevant training offered to them has so far been inadequate. Specifically, only a third of the education systems in Europe have put in place national strategies that explicitly refer to the training of school principals (European Commission, 2019 , p. 16).

Connectivity, infrastructure, and government and other support

The effective integration of digital technologies across levels of education presupposes the development of infrastructure, the provision of digital content, and the selection of proper resources (Voogt et al., 2013 ). Particularly, a high-quality broadband connection in the school increases the quality and quantity of educational activities. There is evidence that ICT increases and formalizes cooperative planning between teachers and cooperation with managers, which in turn has a positive impact on teaching practices (Balanskat et al., 2006 ). Additionally, ICT resources, including software and hardware, increase the likelihood of teachers integrating technology into the curriculum to enhance their teaching practices (Delgado et al., 2015 ). For example, Zheng et al. ( 2016 ) found that the use of one-on-one laptop programs resulted in positive changes in teaching and learning, which would not have been accomplished without the infrastructure and technical support provided to teachers. Delgado et al. ( 2015 ) reported that limited access to technology (insufficient computers, peripherals, and software) and lack of technical support are important barriers to ICT integration. Access to infrastructure refers not only to the availability of technology in a school but also to the provision of a proper amount and the right types of technology in locations where teachers and students can use them. Effective technical support is a central element of the whole-school strategy for ICT (Underwood, 2009 ). Bingimlas ( 2009 ) reported that lack of technical support in the classroom and whole-school resources (e.g., failing to connect to the Internet, printers not printing, malfunctioning computers, and working on old computers) are significant barriers that discourage the use of ICT by teachers. Moreover, poor quality and inadequate hardware maintenance, and unsuitable educational software may discourage teachers from using ICTs (Balanskat et al., 2006 ; Bingimlas, 2009 ).

Government support can also impact the integration of ICTs in teaching. Specifically, Balanskat et al. ( 2006 ) reported that government interventions and training programs increased teachers’ enthusiasm and positive attitudes towards ICT and led to the routine use of embedded ICT.

Lastly, another important factor affecting digital transformation is the development and quality assurance of digital learning resources. Such resources can be support textbooks and related materials or resources that focus on specific subjects or parts of the curriculum. Policies on the provision of digital learning resources are essential for schools and can be achieved through various actions. For example, some countries are financing web portals that become repositories, enabling teachers to share resources or create their own. Additionally, they may offer e-learning opportunities or other services linked to digital education. In other cases, specific agencies of projects have also been set up to develop digital resources (Eurydice, 2019 ).

Administration and digital data management

The digital transformation of schools involves organizational improvements at the level of internal workflows, communication between the different stakeholders, and potential for collaboration. Vuorikari et al. ( 2020 ) presented evidence that digital technologies supported the automation of administrative practices in schools and reduced the administration’s workload. There is evidence that digital data affects the production of knowledge about schools and has the power to transform how schooling takes place. Specifically, Sellar ( 2015 ) reported that data infrastructure in education is developing due to the demand for “ information about student outcomes, teacher quality, school performance, and adult skills, associated with policy efforts to increase human capital and productivity practices ” (p. 771). In this regard, practices, such as datafication which refers to the “ translation of information about all kinds of things and processes into quantified formats” have become essential for decision-making based on accountability reports about the school’s quality. The data could be turned into deep insights about education or training incorporating ICTs. For example, measuring students’ online engagement with the learning material and drawing meaningful conclusions can allow teachers to improve their educational interventions (Vuorikari et al., 2020 ).

Students’ socioeconomic background and family support

Research show that the active engagement of parents in the school and their support for the school’s work can make a difference to their children’s attitudes towards learning and, as a result, their achievement (Hattie, 2008 ). In recent years, digital technologies have been used for more effective communication between school and family (Escueta et al., 2017 ). The European Commission ( 2020 ) presented data from a Eurostat survey regarding the use of computers by students during the pandemic. The data showed that younger pupils needed additional support and guidance from parents and the challenges were greater for families in which parents had lower levels of education and little to no digital skills.

In this regard, the socio-economic background of the learners and their socio-cultural environment also affect educational achievements (Punie et al., 2006 ). Trucano documented that the use of computers at home positively influenced students’ confidence and resulted in more frequent use at school, compared to students who had no home access (Trucano, 2005 ). In this sense, the socio-economic background affects the access to computers at home (OECD, 2015 ) which in turn influences the experience of ICT, an important factor for school achievement (Punie et al., 2006 ; Underwood, 2009 ). Furthermore, parents from different socio-economic backgrounds may have different abilities and availability to support their children in their learning process (Di Pietro et al., 2020 ).

Schools’ socioeconomic context and emergency situations

The socio-economic context of the school is closely related to a school’s digital transformation. For example, schools in disadvantaged, rural, or deprived areas are likely to lack the digital capacity and infrastructure required to adapt to the use of digital technologies during emergency periods, such as the COVID-19 pandemic (Di Pietro et al., 2020 ). Data collected from school principals confirmed that in several countries, there is a rural/urban divide in connectivity (OECD, 2015 ).

Emergency periods also affect the digitalization of schools. The COVID-19 pandemic led to the closure of schools and forced them to seek appropriate and connective ways to keep working on the curriculum (Di Pietro et al., 2020 ). The sudden large-scale shift to distance and online teaching and learning also presented challenges around quality and equity in education, such as the risk of increased inequalities in learning, digital, and social, as well as teachers facing difficulties coping with this demanding situation (European Commission, 2020 ).

Looking at the findings of the above studies, we can conclude that the impact of digital technologies on education is influenced by various actors and touches many aspects of the school ecosystem. Figure  1 summarizes the factors affecting the digital technologies’ impact on school stakeholders based on the findings from the literature review.

An external file that holds a picture, illustration, etc.
Object name is 10639_2022_11431_Fig1_HTML.jpg

Factors that affect the impact of ICTs on education

The findings revealed that the use of digital technologies in education affects a variety of actors within a school’s ecosystem. First, we observed that as technologies evolve, so does the interest of the research community to apply them to school settings. Figure  2 summarizes the trends identified in current research around the impact of digital technologies on schools’ digital capacity and transformation as found in the present study. Starting as early as 2005, when computers, simulations, and interactive boards were the most commonly applied tools in school interventions (e.g., Eng, 2005 ; Liao et al., 2007 ; Moran et al., 2008 ; Tamim et al., 2011 ), moving towards the use of learning platforms (Jewitt et al., 2011 ), then to the use of mobile devices and digital games (e.g., Tamim et al., 2015 ; Sung et al., 2016 ; Talan et al., 2020 ), as well as e-books (e.g., Savva et al., 2022 ), to the more recent advanced technologies, such as AR and VR applications (e.g., Garzón & Acevedo, 2019 ; Garzón et al., 2020 ; Kalemkuş & Kalemkuş, 2022 ), or robotics and AI (e.g., Su & Yang, 2022 ; Su et al., 2022 ). As this evolution shows, digital technologies are a concept in flux with different affordances and characteristics. Additionally, from an instructional perspective, there has been a growing interest in different modes and models of content delivery such as online, blended, and hybrid modes (e.g., Cheok & Wong, 2015 ; Kazu & Yalçin, 2022 ; Ulum, 2022 ). This is an indication that the value of technologies to support teaching and learning as well as other school-related practices is increasingly recognized by the research and school community. The impact results from the literature review indicate that ICT integration on students’ learning outcomes has effects that are small (Coban et al., 2022 ; Eng, 2005 ; Higgins et al., 2012 ; Schmid et al., 2014 ; Tamim et al., 2015 ; Zheng et al., 2016 ) to moderate (Garzón & Acevedo, 2019 ; Garzón et al., 2020 ; Liao et al., 2007 ; Sung et al., 2016 ; Talan et al., 2020 ; Wen & Walters, 2022 ). That said, a number of recent studies have reported high effect sizes (e.g., Kazu & Yalçin, 2022 ).

An external file that holds a picture, illustration, etc.
Object name is 10639_2022_11431_Fig2_HTML.jpg

Current work and trends in the study of the impact of digital technologies on schools’ digital capacity

Based on these findings, several authors have suggested that the impact of technology on education depends on several variables and not on the technology per se (Tamim et al., 2011 ; Higgins et al., 2012 ; Archer et al., 2014 ; Sung et al., 2016 ; Haßler et al., 2016 ; Chauhan, 2017 ; Lee et al., 2020 ; Lei et al., 2022a ). While the impact of ICTs on student achievement has been thoroughly investigated by researchers, other aspects related to school life that are also affected by ICTs, such as equality, inclusion, and social integration have received less attention. Further analysis of the literature review has revealed a greater investment in ICT interventions to support learning and teaching in the core subjects of literacy and STEM disciplines, especially mathematics, and science. These were the most common subjects studied in the reviewed papers often drawing on national testing results, while studies that investigated other subject areas, such as social studies, were limited (Chauhan, 2017 ; Condie & Munro, 2007 ). As such, research is still lacking impact studies that focus on the effects of ICTs on a range of curriculum subjects.

The qualitative research provided additional information about the impact of digital technologies on education, documenting positive effects and giving more details about implications, recommendations, and future research directions. Specifically, the findings regarding the role of ICTs in supporting learning highlight the importance of teachers’ instructional practice and the learning context in the use of technologies and consequently their impact on instruction (Çelik, 2022 ; Schmid et al., 2014 ; Tamim et al., 2015 ). The review also provided useful insights regarding the various factors that affect the impact of digital technologies on education. These factors are interconnected and play a vital role in the transformation process. Specifically, these factors include a) digital competencies; b) teachers’ personal characteristics and professional development; c) school leadership and management; d) connectivity, infrastructure, and government support; e) administration and data management practices; f) students’ socio-economic background and family support and g) the socioeconomic context of the school and emergency situations. It is worth noting that we observed factors that affect the integration of ICTs in education but may also be affected by it. For example, the frequent use of ICTs and the use of laptops by students for instructional purposes positively affect the development of digital competencies (Zheng et al., 2016 ) and at the same time, the digital competencies affect the use of ICTs (Fu, 2013 ; Higgins et al., 2012 ). As a result, the impact of digital technologies should be explored more as an enabler of desirable and new practices and not merely as a catalyst that improves the output of the education process i.e. namely student attainment.

Conclusions

Digital technologies offer immense potential for fundamental improvement in schools. However, investment in ICT infrastructure and professional development to improve school education are yet to provide fruitful results. Digital transformation is a complex process that requires large-scale transformative changes that presuppose digital capacity and preparedness. To achieve such changes, all actors within the school’s ecosystem need to share a common vision regarding the integration of ICTs in education and work towards achieving this goal. Our literature review, which synthesized quantitative and qualitative data from a list of meta-analyses and review studies, provided useful insights into the impact of ICTs on different school stakeholders and showed that the impact of digital technologies touches upon many different aspects of school life, which are often overlooked when the focus is on student achievement as the final output of education. Furthermore, the concept of digital technologies is a concept in flux as technologies are not only different among them calling for different uses in the educational practice but they also change through time. Additionally, we opened a forum for discussion regarding the factors that affect a school’s digital capacity and transformation. We hope that our study will inform policy, practice, and research and result in a paradigm shift towards more holistic approaches in impact and assessment studies.

Study limitations and future directions

We presented a review of the study of digital technologies' impact on education and factors influencing schools’ digital capacity and transformation. The study results were based on a non-systematic literature review grounded on the acquisition of documentation in specific databases. Future studies should investigate more databases to corroborate and enhance our results. Moreover, search queries could be enhanced with key terms that could provide additional insights about the integration of ICTs in education, such as “policies and strategies for ICT integration in education”. Also, the study drew information from meta-analyses and literature reviews to acquire evidence about the effects of ICT integration in schools. Such evidence was mostly based on the general conclusions of the studies. It is worth mentioning that, we located individual studies which showed different, such as negative or neutral results. Thus, further insights are needed about the impact of ICTs on education and the factors influencing the impact. Furthermore, the nature of the studies included in meta-analyses and reviews is different as they are based on different research methodologies and data gathering processes. For instance, in a meta-analysis, the impact among the studies investigated is measured in a particular way, depending on policy or research targets (e.g., results from national examinations, pre-/post-tests). Meanwhile, in literature reviews, qualitative studies offer additional insights and detail based on self-reports and research opinions on several different aspects and stakeholders who could affect and be affected by ICT integration. As a result, it was challenging to draw causal relationships between so many interrelating variables.

Despite the challenges mentioned above, this study envisaged examining school units as ecosystems that consist of several actors by bringing together several variables from different research epistemologies to provide an understanding of the integration of ICTs. However, the use of other tools and methodologies and models for evaluation of the impact of digital technologies on education could give more detailed data and more accurate results. For instance, self-reflection tools, like SELFIE—developed on the DigCompOrg framework- (Kampylis et al., 2015 ; Bocconi & Lightfoot, 2021 ) can help capture a school’s digital capacity and better assess the impact of ICTs on education. Furthermore, the development of a theory of change could be a good approach for documenting the impact of digital technologies on education. Specifically, theories of change are models used for the evaluation of interventions and their impact; they are developed to describe how interventions will work and give the desired outcomes (Mayne, 2015 ). Theory of change as a methodological approach has also been used by researchers to develop models for evaluation in the field of education (e.g., Aromatario et al., 2019 ; Chapman & Sammons, 2013 ; De Silva et al., 2014 ).

We also propose that future studies aim at similar investigations by applying more holistic approaches for impact assessment that can provide in-depth data about the impact of digital technologies on education. For instance, future studies could focus on different research questions about the technologies that are used during the interventions or the way the implementation takes place (e.g., What methodologies are used for documenting impact? How are experimental studies implemented? How can teachers be taken into account and trained on the technology and its functions? What are the elements of an appropriate and successful implementation? How is the whole intervention designed? On which learning theories is the technology implementation based?).

Future research could also focus on assessing the impact of digital technologies on various other subjects since there is a scarcity of research related to particular subjects, such as geography, history, arts, music, and design and technology. More research should also be done about the impact of ICTs on skills, emotions, and attitudes, and on equality, inclusion, social interaction, and special needs education. There is also a need for more research about the impact of ICTs on administration, management, digitalization, and home-school relationships. Additionally, although new forms of teaching and learning with the use of ICTs (e.g., blended, hybrid, and online learning) have initiated several investigations in mainstream classrooms, only a few studies have measured their impact on students’ learning. Additionally, our review did not document any study about the impact of flipped classrooms on K-12 education. Regarding teaching and learning approaches, it is worth noting that studies referred to STEM or STEAM did not investigate the impact of STEM/STEAM as an interdisciplinary approach to learning but only investigated the impact of ICTs on learning in each domain as a separate subject (science, technology, engineering, arts, mathematics). Hence, we propose future research to also investigate the impact of the STEM/STEAM approach on education. The impact of emerging technologies on education, such as AR, VR, robotics, and AI has also been investigated recently, but more work needs to be done.

Finally, we propose that future studies could focus on the way in which specific factors, e.g., infrastructure and government support, school leadership and management, students’ and teachers’ digital competencies, approaches teachers utilize in the teaching and learning (e.g., blended, online and hybrid learning, flipped classrooms, STEM/STEAM approach, project-based learning, inquiry-based learning), affect the impact of digital technologies on education. We hope that future studies will give detailed insights into the concept of schools’ digital transformation through further investigation of impacts and factors which influence digital capacity and transformation based on the results and the recommendations of the present study.

Acknowledgements

This project has received funding under Grant Agreement No Ref Ares (2021) 339036 7483039 as well as funding from the European Union’s Horizon 2020 Research and Innovation Program under Grant Agreement No 739578 and the Government of the Republic of Cyprus through the Deputy Ministry of Research, Innovation and Digital Policy. The UVa co-authors would like also to acknowledge funding from the European Regional Development Fund and the National Research Agency of the Spanish Ministry of Science and Innovation, under project grant PID2020-112584RB-C32.

Data availability statement

Declarations.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

  • Archer K, Savage R, Sanghera-Sidhu S, Wood E, Gottardo A, Chen V. Examining the effectiveness of technology use in classrooms: A tertiary meta-analysis. Computers & Education. 2014; 78 :140–149. doi: 10.1016/j.compedu.2014.06.001. [ CrossRef ] [ Google Scholar ]
  • Aromatario O, Van Hoye A, Vuillemin A, Foucaut AM, Pommier J, Cambon L. Using theory of change to develop an intervention theory for designing and evaluating behavior change SDApps for healthy eating and physical exercise: The OCAPREV theory. BMC Public Health. 2019; 19 (1):1–12. doi: 10.1186/s12889-019-7828-4. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Arztmann, M., Hornstra, L., Jeuring, J., & Kester, L. (2022). Effects of games in STEM education: A meta-analysis on the moderating role of student background characteristics. Studies in Science Education , 1-37. 10.1080/03057267.2022.2057732
  • Bado N. Game-based learning pedagogy: A review of the literature. Interactive Learning Environments. 2022; 30 (5):936–948. doi: 10.1080/10494820.2019.1683587. [ CrossRef ] [ Google Scholar ]
  • Balanskat, A. (2009). Study of the impact of technology in primary schools – Synthesis Report. Empirica and European Schoolnet. Retrieved 30 June 2022 from: https://erte.dge.mec.pt/sites/default/files/Recursos/Estudos/synthesis_report_steps_en.pdf
  • Balanskat, A. (2006). The ICT Impact Report: A review of studies of ICT impact on schools in Europe, European Schoolnet. Retrieved 30 June 2022 from:  https://en.unesco.org/icted/content/ict-impact-report-review-studies-ict-impact-schools-europe
  • Balanskat, A., Blamire, R., & Kefala, S. (2006). The ICT impact report.  European Schoolnet . Retrieved from: http://colccti.colfinder.org/sites/default/files/ict_impact_report_0.pdf
  • Balyer, A., & Öz, Ö. (2018). Academicians’ views on digital transformation in education. International Online Journal of Education and Teaching (IOJET), 5 (4), 809–830. Retrieved 30 June 2022 from  http://iojet.org/index.php/IOJET/article/view/441/295
  • Baragash RS, Al-Samarraie H, Moody L, Zaqout F. Augmented reality and functional skills acquisition among individuals with special needs: A meta-analysis of group design studies. Journal of Special Education Technology. 2022; 37 (1):74–81. doi: 10.1177/0162643420910413. [ CrossRef ] [ Google Scholar ]
  • Bates, A. W. (2015). Teaching in a digital age: Guidelines for designing teaching and learning . Open Educational Resources Collection . 6. Retrieved 30 June 2022 from: https://irl.umsl.edu/oer/6
  • Bingimlas KA. Barriers to the successful integration of ICT in teaching and learning environments: A review of the literature. Eurasia Journal of Mathematics, Science and Technology Education. 2009; 5 (3):235–245. doi: 10.12973/ejmste/75275. [ CrossRef ] [ Google Scholar ]
  • Blaskó Z, Costa PD, Schnepf SV. Learning losses and educational inequalities in Europe: Mapping the potential consequences of the COVID-19 crisis. Journal of European Social Policy. 2022; 32 (4):361–375. doi: 10.1177/09589287221091687. [ CrossRef ] [ Google Scholar ]
  • Bocconi S, Lightfoot M. Scaling up and integrating the selfie tool for schools' digital capacity in education and training systems: Methodology and lessons learnt. European Training Foundation. 2021 doi: 10.2816/907029,JRC123936. [ CrossRef ] [ Google Scholar ]
  • Brooks, D. C., & McCormack, M. (2020). Driving Digital Transformation in Higher Education . Retrieved 30 June 2022 from: https://library.educause.edu/-/media/files/library/2020/6/dx2020.pdf?la=en&hash=28FB8C377B59AFB1855C225BBA8E3CFBB0A271DA
  • Cachia, R., Chaudron, S., Di Gioia, R., Velicu, A., & Vuorikari, R. (2021). Emergency remote schooling during COVID-19, a closer look at European families. Retrieved 30 June 2022 from  https://publications.jrc.ec.europa.eu/repository/handle/JRC125787
  • Çelik B. The effects of computer simulations on students’ science process skills: Literature review. Canadian Journal of Educational and Social Studies. 2022; 2 (1):16–28. doi: 10.53103/cjess.v2i1.17. [ CrossRef ] [ Google Scholar ]
  • Chapman, C., & Sammons, P. (2013). School Self-Evaluation for School Improvement: What Works and Why? . CfBT Education Trust. 60 Queens Road, Reading, RG1 4BS, England.
  • Chauhan S. A meta-analysis of the impact of technology on learning effectiveness of elementary students. Computers & Education. 2017; 105 :14–30. doi: 10.1016/j.compedu.2016.11.005. [ CrossRef ] [ Google Scholar ]
  • Chen, Q., Chan, K. L., Guo, S., Chen, M., Lo, C. K. M., & Ip, P. (2022a). Effectiveness of digital health interventions in reducing bullying and cyberbullying: a meta-analysis. Trauma, Violence, & Abuse , 15248380221082090. 10.1177/15248380221082090 [ PubMed ]
  • Chen B, Wang Y, Wang L. The effects of virtual reality-assisted language learning: A meta-analysis. Sustainability. 2022; 14 (6):3147. doi: 10.3390/su14063147. [ CrossRef ] [ Google Scholar ]
  • Cheok ML, Wong SL. Predictors of e-learning satisfaction in teaching and learning for school teachers: A literature review. International Journal of Instruction. 2015; 8 (1):75–90. doi: 10.12973/iji.2015.816a. [ CrossRef ] [ Google Scholar ]
  • Cheung, A. C., & Slavin, R. E. (2011). The Effectiveness of Education Technology for Enhancing Reading Achievement: A Meta-Analysis. Center for Research and reform in Education .
  • Coban, M., Bolat, Y. I., & Goksu, I. (2022). The potential of immersive virtual reality to enhance learning: A meta-analysis. Educational Research Review , 100452. 10.1016/j.edurev.2022.100452
  • Condie, R., & Munro, R. K. (2007). The impact of ICT in schools-a landscape review. Retrieved 30 June 2022 from: https://oei.org.ar/ibertic/evaluacion/sites/default/files/biblioteca/33_impact_ict_in_schools.pdf
  • Conrads, J., Rasmussen, M., Winters, N., Geniet, A., Langer, L., (2017). Digital Education Policies in Europe and Beyond: Key Design Principles for More Effective Policies. Redecker, C., P. Kampylis, M. Bacigalupo, Y. Punie (ed.), EUR 29000 EN, Publications Office of the European Union, Luxembourg, 10.2760/462941
  • Costa P, Castaño-Muñoz J, Kampylis P. Capturing schools’ digital capacity: Psychometric analyses of the SELFIE self-reflection tool. Computers & Education. 2021; 162 :104080. doi: 10.1016/j.compedu.2020.104080. [ CrossRef ] [ Google Scholar ]
  • Cussó-Calabuig R, Farran XC, Bosch-Capblanch X. Effects of intensive use of computers in secondary school on gender differences in attitudes towards ICT: A systematic review. Education and Information Technologies. 2018; 23 (5):2111–2139. doi: 10.1007/s10639-018-9706-6. [ CrossRef ] [ Google Scholar ]
  • Daniel SJ. Education and the COVID-19 pandemic. Prospects. 2020; 49 (1):91–96. doi: 10.1007/s11125-020-09464-3. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Delcker J, Ifenthaler D. Teachers’ perspective on school development at German vocational schools during the Covid-19 pandemic. Technology, Pedagogy and Education. 2021; 30 (1):125–139. doi: 10.1080/1475939X.2020.1857826. [ CrossRef ] [ Google Scholar ]
  • Delgado, A., Wardlow, L., O’Malley, K., & McKnight, K. (2015). Educational technology: A review of the integration, resources, and effectiveness of technology in K-12 classrooms. Journal of Information Technology Education Research , 14, 397. Retrieved 30 June 2022 from  http://www.jite.org/documents/Vol14/JITEv14ResearchP397-416Delgado1829.pdf
  • De Silva MJ, Breuer E, Lee L, Asher L, Chowdhary N, Lund C, Patel V. Theory of change: A theory-driven approach to enhance the Medical Research Council's framework for complex interventions. Trials. 2014; 15 (1):1–13. doi: 10.1186/1745-6215-15-267. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Di Pietro G, Biagi F, Costa P, Karpiński Z, Mazza J. The likely impact of COVID-19 on education: Reflections based on the existing literature and recent international datasets. Publications Office of the European Union; 2020. [ Google Scholar ]
  • Elkordy A, Lovinelli J. Competencies, Culture, and Change: A Model for Digital Transformation in K12 Educational Contexts. In: Ifenthaler D, Hofhues S, Egloffstein M, Helbig C, editors. Digital Transformation of Learning Organizations. Springer; 2020. pp. 203–219. [ Google Scholar ]
  • Eng TS. The impact of ICT on learning: A review of research. International Education Journal. 2005; 6 (5):635–650. [ Google Scholar ]
  • European Commission. (2020). Digital Education Action Plan 2021 – 2027. Resetting education and training for the digital age. Retrieved 30 June 2022 from  https://ec.europa.eu/education/sites/default/files/document-library-docs/deap-communication-sept2020_en.pdf
  • European Commission. (2019). 2 nd survey of schools: ICT in education. Objective 1: Benchmark progress in ICT in schools . Retrieved 30 June 2022 from: https://data.europa.eu/euodp/data/storage/f/2019-03-19T084831/FinalreportObjective1-BenchmarkprogressinICTinschools.pdf
  • Eurydice. (2019). Digital Education at School in Europe , Luxembourg: Publications Office of the European Union. Retrieved 30 June 2022 from: https://eacea.ec.europa.eu/national-policies/eurydice/content/digital-education-school-europe_en
  • Escueta, M., Quan, V., Nickow, A. J., & Oreopoulos, P. (2017). Education technology: An evidence-based review. Retrieved 30 June 2022 from  https://ssrn.com/abstract=3031695
  • Fadda D, Pellegrini M, Vivanet G, Zandonella Callegher C. Effects of digital games on student motivation in mathematics: A meta-analysis in K-12. Journal of Computer Assisted Learning. 2022; 38 (1):304–325. doi: 10.1111/jcal.12618. [ CrossRef ] [ Google Scholar ]
  • Fernández-Gutiérrez M, Gimenez G, Calero J. Is the use of ICT in education leading to higher student outcomes? Analysis from the Spanish Autonomous Communities. Computers & Education. 2020; 157 :103969. doi: 10.1016/j.compedu.2020.103969. [ CrossRef ] [ Google Scholar ]
  • Ferrari, A., Cachia, R., & Punie, Y. (2011). Educational change through technology: A challenge for obligatory schooling in Europe. Lecture Notes in Computer Science , 6964 , 97–110. Retrieved 30 June 2022  https://link.springer.com/content/pdf/10.1007/978-3-642-23985-4.pdf
  • Fielding, K., & Murcia, K. (2022). Research linking digital technologies to young children’s creativity: An interpretive framework and systematic review. Issues in Educational Research , 32 (1), 105–125. Retrieved 30 June 2022 from  http://www.iier.org.au/iier32/fielding-abs.html
  • Friedel, H., Bos, B., Lee, K., & Smith, S. (2013). The impact of mobile handheld digital devices on student learning: A literature review with meta-analysis. In Society for Information Technology & Teacher Education International Conference (pp. 3708–3717). Association for the Advancement of Computing in Education (AACE).
  • Fu JS. ICT in education: A critical literature review and its implications. International Journal of Education and Development Using Information and Communication Technology (IJEDICT) 2013; 9 (1):112–125. [ Google Scholar ]
  • Gaol FL, Prasolova-Førland E. Special section editorial: The frontiers of augmented and mixed reality in all levels of education. Education and Information Technologies. 2022; 27 (1):611–623. doi: 10.1007/s10639-021-10746-2. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Garzón J, Acevedo J. Meta-analysis of the impact of Augmented Reality on students’ learning gains. Educational Research Review. 2019; 27 :244–260. doi: 10.1016/j.edurev.2019.04.001. [ CrossRef ] [ Google Scholar ]
  • Garzón, J., Baldiris, S., Gutiérrez, J., & Pavón, J. (2020). How do pedagogical approaches affect the impact of augmented reality on education? A meta-analysis and research synthesis. Educational Research Review , 100334. 10.1016/j.edurev.2020.100334
  • Grgurović M, Chapelle CA, Shelley MC. A meta-analysis of effectiveness studies on computer technology-supported language learning. ReCALL. 2013; 25 (2):165–198. doi: 10.1017/S0958344013000013. [ CrossRef ] [ Google Scholar ]
  • Haßler B, Major L, Hennessy S. Tablet use in schools: A critical review of the evidence for learning outcomes. Journal of Computer Assisted Learning. 2016; 32 (2):139–156. doi: 10.1111/jcal.12123. [ CrossRef ] [ Google Scholar ]
  • Haleem A, Javaid M, Qadri MA, Suman R. Understanding the role of digital technologies in education: A review. Sustainable Operations and Computers. 2022; 3 :275–285. doi: 10.1016/j.susoc.2022.05.004. [ CrossRef ] [ Google Scholar ]
  • Hardman J. Towards a pedagogical model of teaching with ICTs for mathematics attainment in primary school: A review of studies 2008–2018. Heliyon. 2019; 5 (5):e01726. doi: 10.1016/j.heliyon.2019.e01726. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hattie J, Rogers HJ, Swaminathan H. The role of meta-analysis in educational research. In: Reid AD, Hart P, Peters MA, editors. A companion to research in education. Springer; 2014. pp. 197–207. [ Google Scholar ]
  • Hattie J. Visible learning: A synthesis of over 800 meta-analyses relating to achievement. Routledge. 2008 doi: 10.4324/9780203887332. [ CrossRef ] [ Google Scholar ]
  • Higgins S, Xiao Z, Katsipataki M. The impact of digital technology on learning: A summary for the education endowment foundation. Education Endowment Foundation and Durham University; 2012. [ Google Scholar ]
  • Higgins, K., Huscroft-D’Angelo, J., & Crawford, L. (2019). Effects of technology in mathematics on achievement, motivation, and attitude: A meta-analysis. Journal of Educational Computing Research , 57(2), 283-319.
  • Hillmayr D, Ziernwald L, Reinhold F, Hofer SI, Reiss KM. The potential of digital tools to enhance mathematics and science learning in secondary schools: A context-specific meta-analysis. Computers & Education. 2020; 153 (1038):97. doi: 10.1016/j.compedu.2020.103897. [ CrossRef ] [ Google Scholar ]
  • Istenic Starcic A, Bagon S. ICT-supported learning for inclusion of people with special needs: Review of seven educational technology journals, 1970–2011. British Journal of Educational Technology. 2014; 45 (2):202–230. doi: 10.1111/bjet.12086. [ CrossRef ] [ Google Scholar ]
  • Jewitt C, Clark W, Hadjithoma-Garstka C. The use of learning platforms to organise learning in English primary and secondary schools. Learning, Media and Technology. 2011; 36 (4):335–348. doi: 10.1080/17439884.2011.621955. [ CrossRef ] [ Google Scholar ]
  • JISC. (2020). What is digital transformation?.  Retrieved 30 June 2022 from: https://www.jisc.ac.uk/guides/digital-strategy-framework-for-university-leaders/what-is-digital-transformation
  • Kalati, A. T., & Kim, M. S. (2022). What is the effect of touchscreen technology on young children’s learning?: A systematic review. Education and Information Technologies , 1-19. 10.1007/s10639-021-10816-5
  • Kalemkuş, J., & Kalemkuş, F. (2022). Effect of the use of augmented reality applications on academic achievement of student in science education: Meta-analysis review. Interactive Learning Environments , 1-18. 10.1080/10494820.2022.2027458
  • Kao C-W. The effects of digital game-based learning task in English as a foreign language contexts: A meta-analysis. Education Journal. 2014; 42 (2):113–141. [ Google Scholar ]
  • Kampylis P, Punie Y, Devine J. Promoting effective digital-age learning - a European framework for digitally competent educational organisations. JRC Technical Reports. 2015 doi: 10.2791/54070. [ CrossRef ] [ Google Scholar ]
  • Kazu IY, Yalçin CK. Investigation of the effectiveness of hybrid learning on academic achievement: A meta-analysis study. International Journal of Progressive Education. 2022; 18 (1):249–265. doi: 10.29329/ijpe.2022.426.14. [ CrossRef ] [ Google Scholar ]
  • Koh C. A qualitative meta-analysis on the use of serious games to support learners with intellectual and developmental disabilities: What we know, what we need to know and what we can do. International Journal of Disability, Development and Education. 2022; 69 (3):919–950. doi: 10.1080/1034912X.2020.1746245. [ CrossRef ] [ Google Scholar ]
  • König J, Jäger-Biela DJ, Glutsch N. Adapting to online teaching during COVID-19 school closure: Teacher education and teacher competence effects among early career teachers in Germany. European Journal of Teacher Education. 2020; 43 (4):608–622. doi: 10.1080/02619768.2020.1809650. [ CrossRef ] [ Google Scholar ]
  • Lawrence JE, Tar UA. Factors that influence teachers’ adoption and integration of ICT in teaching/learning process. Educational Media International. 2018; 55 (1):79–105. doi: 10.1080/09523987.2018.1439712. [ CrossRef ] [ Google Scholar ]
  • Lee, S., Kuo, L. J., Xu, Z., & Hu, X. (2020). The effects of technology-integrated classroom instruction on K-12 English language learners’ literacy development: A meta-analysis. Computer Assisted Language Learning , 1-32. 10.1080/09588221.2020.1774612
  • Lei, H., Chiu, M. M., Wang, D., Wang, C., & Xie, T. (2022a). Effects of game-based learning on students’ achievement in science: a meta-analysis. Journal of Educational Computing Research . 10.1177/07356331211064543
  • Lei H, Wang C, Chiu MM, Chen S. Do educational games affect students' achievement emotions? Evidence from a meta-analysis. Journal of Computer Assisted Learning. 2022; 38 (4):946–959. doi: 10.1111/jcal.12664. [ CrossRef ] [ Google Scholar ]
  • Liao YKC, Chang HW, Chen YW. Effects of computer application on elementary school student's achievement: A meta-analysis of students in Taiwan. Computers in the Schools. 2007; 24 (3–4):43–64. doi: 10.1300/J025v24n03_04. [ CrossRef ] [ Google Scholar ]
  • Li Q, Ma X. A meta-analysis of the effects of computer technology on school students’ mathematics learning. Educational Psychology Review. 2010; 22 (3):215–243. doi: 10.1007/s10648-010-9125-8. [ CrossRef ] [ Google Scholar ]
  • Liu, M., Pang, W., Guo, J., & Zhang, Y. (2022). A meta-analysis of the effect of multimedia technology on creative performance. Education and Information Technologies , 1-28. 10.1007/s10639-022-10981-1
  • Lu Z, Chiu MM, Cui Y, Mao W, Lei H. Effects of game-based learning on students’ computational thinking: A meta-analysis. Journal of Educational Computing Research. 2022 doi: 10.1177/07356331221100740. [ CrossRef ] [ Google Scholar ]
  • Martinez L, Gimenes M, Lambert E. Entertainment video games for academic learning: A systematic review. Journal of Educational Computing Research. 2022 doi: 10.1177/07356331211053848. [ CrossRef ] [ Google Scholar ]
  • Mayne J. Useful theory of change models. Canadian Journal of Program Evaluation. 2015; 30 (2):119–142. doi: 10.3138/cjpe.230. [ CrossRef ] [ Google Scholar ]
  • Moran J, Ferdig RE, Pearson PD, Wardrop J, Blomeyer RL., Jr Technology and reading performance in the middle-school grades: A meta-analysis with recommendations for policy and practice. Journal of Literacy Research. 2008; 40 (1):6–58. doi: 10.1080/10862960802070483. [ CrossRef ] [ Google Scholar ]
  • OECD. (2015). Students, Computers and Learning: Making the Connection . PISA, OECD Publishing, Paris. Retrieved from: 10.1787/9789264239555-en
  • OECD. (2021). OECD Digital Education Outlook 2021: Pushing the Frontiers with Artificial Intelligence, Blockchain and Robots. Retrieved from: https://www.oecd-ilibrary.org/education/oecd-digital-education-outlook-2021_589b283f-en
  • Pan Y, Ke F, Xu X. A systematic review of the role of learning games in fostering mathematics education in K-12 settings. Educational Research Review. 2022; 36 :100448. doi: 10.1016/j.edurev.2022.100448. [ CrossRef ] [ Google Scholar ]
  • Pettersson F. Understanding digitalization and educational change in school by means of activity theory and the levels of learning concept. Education and Information Technologies. 2021; 26 (1):187–204. doi: 10.1007/s10639-020-10239-8. [ CrossRef ] [ Google Scholar ]
  • Pihir, I., Tomičić-Pupek, K., & Furjan, M. T. (2018). Digital transformation insights and trends. In Central European Conference on Information and Intelligent Systems (pp. 141–149). Faculty of Organization and Informatics Varazdin. Retrieved 30 June 2022 from https://www.proquest.com/conference-papers-proceedings/digital-transformation-insights-trends/docview/2125639934/se-2
  • Punie, Y., Zinnbauer, D., & Cabrera, M. (2006). A review of the impact of ICT on learning. Working Paper prepared for DG EAC. Retrieved 30 June 2022 from: http://www.eurosfaire.prd.fr/7pc/doc/1224678677_jrc47246n.pdf
  • Quah CY, Ng KH. A systematic literature review on digital storytelling authoring tool in education: January 2010 to January 2020. International Journal of Human-Computer Interaction. 2022; 38 (9):851–867. doi: 10.1080/10447318.2021.1972608. [ CrossRef ] [ Google Scholar ]
  • Ran H, Kim NJ, Secada WG. A meta-analysis on the effects of technology's functions and roles on students' mathematics achievement in K-12 classrooms. Journal of computer assisted learning. 2022; 38 (1):258–284. doi: 10.1111/jcal.12611. [ CrossRef ] [ Google Scholar ]
  • Ređep, N. B. (2021). Comparative overview of the digital preparedness of education systems in selected CEE countries. Center for Policy Studies. CEU Democracy Institute .
  • Rott, B., & Marouane, C. (2018). Digitalization in schools–organization, collaboration and communication. In Digital Marketplaces Unleashed (pp. 113–124). Springer, Berlin, Heidelberg.
  • Savva M, Higgins S, Beckmann N. Meta-analysis examining the effects of electronic storybooks on language and literacy outcomes for children in grades Pre-K to grade 2. Journal of Computer Assisted Learning. 2022; 38 (2):526–564. doi: 10.1111/jcal.12623. [ CrossRef ] [ Google Scholar ]
  • Schmid RF, Bernard RM, Borokhovski E, Tamim RM, Abrami PC, Surkes MA, Wade CA, Woods J. The effects of technology use in postsecondary education: A meta-analysis of classroom applications. Computers & Education. 2014; 72 :271–291. doi: 10.1016/j.compedu.2013.11.002. [ CrossRef ] [ Google Scholar ]
  • Schuele CM, Justice LM. The importance of effect sizes in the interpretation of research: Primer on research: Part 3. The ASHA Leader. 2006; 11 (10):14–27. doi: 10.1044/leader.FTR4.11102006.14. [ CrossRef ] [ Google Scholar ]
  • Schwabe, A., Lind, F., Kosch, L., & Boomgaarden, H. G. (2022). No negative effects of reading on screen on comprehension of narrative texts compared to print: A meta-analysis. Media Psychology , 1-18. 10.1080/15213269.2022.2070216
  • Sellar S. Data infrastructure: a review of expanding accountability systems and large-scale assessments in education. Discourse: Studies in the Cultural Politics of Education. 2015; 36 (5):765–777. doi: 10.1080/01596306.2014.931117. [ CrossRef ] [ Google Scholar ]
  • Stock WA. Systematic coding for research synthesis. In: Cooper H, Hedges LV, editors. The handbook of research synthesis, 236. Russel Sage; 1994. pp. 125–138. [ Google Scholar ]
  • Su, J., Zhong, Y., & Ng, D. T. K. (2022). A meta-review of literature on educational approaches for teaching AI at the K-12 levels in the Asia-Pacific region. Computers and Education: Artificial Intelligence , 100065. 10.1016/j.caeai.2022.100065
  • Su J, Yang W. Artificial intelligence in early childhood education: A scoping review. Computers and Education: Artificial Intelligence. 2022; 3 :100049. doi: 10.1016/j.caeai.2022.100049. [ CrossRef ] [ Google Scholar ]
  • Sung YT, Chang KE, Liu TC. The effects of integrating mobile devices with teaching and learning on students' learning performance: A meta-analysis and research synthesis. Computers & Education. 2016; 94 :252–275. doi: 10.1016/j.compedu.2015.11.008. [ CrossRef ] [ Google Scholar ]
  • Talan T, Doğan Y, Batdı V. Efficiency of digital and non-digital educational games: A comparative meta-analysis and a meta-thematic analysis. Journal of Research on Technology in Education. 2020; 52 (4):474–514. doi: 10.1080/15391523.2020.1743798. [ CrossRef ] [ Google Scholar ]
  • Tamim, R. M., Bernard, R. M., Borokhovski, E., Abrami, P. C., & Schmid, R. F. (2011). What forty years of research says about the impact of technology on learning: A second-order meta-analysis and validation study. Review of Educational research, 81 (1), 4–28. Retrieved 30 June 2022 from 10.3102/0034654310393361
  • Tamim, R. M., Borokhovski, E., Pickup, D., Bernard, R. M., & El Saadi, L. (2015). Tablets for teaching and learning: A systematic review and meta-analysis. Commonwealth of Learning. Retrieved from: http://oasis.col.org/bitstream/handle/11599/1012/2015_Tamim-et-al_Tablets-for-Teaching-and-Learning.pdf
  • Tang C, Mao S, Xing Z, Naumann S. Improving student creativity through digital technology products: A literature review. Thinking Skills and Creativity. 2022; 44 :101032. doi: 10.1016/j.tsc.2022.101032. [ CrossRef ] [ Google Scholar ]
  • Tolani-Brown, N., McCormac, M., & Zimmermann, R. (2011). An analysis of the research and impact of ICT in education in developing country contexts. In ICTs and sustainable solutions for the digital divide: Theory and perspectives (pp. 218–242). IGI Global.
  • Trucano, M. (2005). Knowledge Maps: ICTs in Education. Washington, DC: info Dev / World Bank. Retrieved 30 June 2022 from  https://files.eric.ed.gov/fulltext/ED496513.pdf
  • Ulum H. The effects of online education on academic success: A meta-analysis study. Education and Information Technologies. 2022; 27 (1):429–450. doi: 10.1007/s10639-021-10740-8. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Underwood, J. D. (2009). The impact of digital technology: A review of the evidence of the impact of digital technologies on formal education. Retrieved 30 June 2022 from: http://dera.ioe.ac.uk/id/eprint/10491
  • Verschaffel, L., Depaepe, F., & Mevarech, Z. (2019). Learning Mathematics in metacognitively oriented ICT-Based learning environments: A systematic review of the literature. Education Research International , 2019 . 10.1155/2019/3402035
  • Villena-Taranilla R, Tirado-Olivares S, Cózar-Gutiérrez R, González-Calero JA. Effects of virtual reality on learning outcomes in K-6 education: A meta-analysis. Educational Research Review. 2022; 35 :100434. doi: 10.1016/j.edurev.2022.100434. [ CrossRef ] [ Google Scholar ]
  • Voogt J, Knezek G, Cox M, Knezek D, ten Brummelhuis A. Under which conditions does ICT have a positive effect on teaching and learning? A call to action. Journal of Computer Assisted Learning. 2013; 29 (1):4–14. doi: 10.1111/j.1365-2729.2011.00453.x. [ CrossRef ] [ Google Scholar ]
  • Vuorikari, R., Punie, Y., & Cabrera, M. (2020). Emerging technologies and the teaching profession: Ethical and pedagogical considerations based on near-future scenarios  (No. JRC120183). Joint Research Centre. Retrieved 30 June 2022 from: https://publications.jrc.ec.europa.eu/repository/handle/JRC120183
  • Wang LH, Chen B, Hwang GJ, Guan JQ, Wang YQ. Effects of digital game-based STEM education on students’ learning achievement: A meta-analysis. International Journal of STEM Education. 2022; 9 (1):1–13. doi: 10.1186/s40594-022-00344-0. [ CrossRef ] [ Google Scholar ]
  • Wen X, Walters SM. The impact of technology on students’ writing performances in elementary classrooms: A meta-analysis. Computers and Education Open. 2022; 3 :100082. doi: 10.1016/j.caeo.2022.100082. [ CrossRef ] [ Google Scholar ]
  • Zheng B, Warschauer M, Lin CH, Chang C. Learning in one-to-one laptop environments: A meta-analysis and research synthesis. Review of Educational Research. 2016; 86 (4):1052–1084. doi: 10.3102/0034654316628645. [ CrossRef ] [ Google Scholar ]

IMAGES

  1. how can technology solve problems with education

    how can technology solve problems with education

  2. how can technology solve problems with education

    how can technology solve problems with education

  3. how can technology solve problems with education

    how can technology solve problems with education

  4. How technology can help improve education.

    how can technology solve problems with education

  5. how can technology solve problems with education

    how can technology solve problems with education

  6. How Technology Can Solve Education Problems in India

    how can technology solve problems with education

VIDEO

  1. Can Technology Solve India's Finances?

  2. Growing use of technology in classrooms

  3. Supporting Learning with InclusiveTechnology

  4. Can Technology Solve the World's Water and Sanitation Problems

  5. Can AI Solve the Loneliness It Creates?

  6. Can Technology Solve Our Big Problems

COMMENTS

  1. How Technology Can Help Solve Education's Stickiest Problems

    Learn how technology can help solve education's stickiest problems, such as asset tracking, Wi-Fi 6, school safety and device management. EdTech Magazine showcases stories and examples of K-12 schools using technology to enhance learning and operations.

  2. Education is in Crisis: How Can Technology be Part of the Solution?

    It can be seen as a partial solution for two fundamental learning crisis problems: addressing students at different learning levels and completing the syllabus. A classroom contains students with a range of baseline learning levels and teachers are often incentivized to teach to the upper stratum, leaving many students behind.

  3. Technology might be making education worse

    An associate professor of education argues that digital platforms and tools are limiting students' online and offline lives, privacy, and creativity. He suggests that technology is not ...

  4. Realizing the promise: How can education technology improve learning

    This report explores how technology can enhance the work of educators and learners in low- and middle-income countries. It proposes a framework to diagnose, evidence, and prognose the impact of ed ...

  5. How technology is reinventing K-12 education

    The article explores some of the technology trends in K-12 education, such as AI, immersive environments, gamification, and data-gathering. It also discusses the challenges and opportunities for ...

  6. How technology is reinventing education

    Learn about the latest trends and challenges in educational technology, from AI chatbots to immersive environments, from Stanford experts. Find out how technology can enhance learning, teaching, and assessment, and what are the ethical and practical implications.

  7. Can AI Transform Education to Ensure All Students Benefit?

    Teachers will only use AI-based tools that help solve problems and make their lives easier, so the tools must be user friendly, relevant, and lead to impact. As with student-facing tools, teacher-facing tools must be accurate, engaging, and unbiased, and they must take into account the evidence on how adults, and teachers in particular, learn ...

  8. PDF Challenges and solutions when using technologies in the classroom

    This chapter explores the external and internal barriers to technology integration in education, and offers strategies to overcome them. It also presents an international perspective on the technology problem in Chile, and summarizes the main recommendations for effective technology implementation.

  9. Education reform and change driven by digital technology: a

    These theoretical and speculative arguments provided a unique perspective on the impact of cognitive digital technology on education and teaching. As can be seen from the vocabulary such as ...

  10. Why technology in education must be on our terms

    The 2023 GEM Report examines how technology has transformed education, its benefits, limitations, and the challenges associated with its implementation. It urges countries to set their own terms for the way technology is designed and used in learning, ensuring appropriateness, equity, evidence-based decisions, and sustainability.

  11. Misguided Use of Ed Tech Is a Big Problem. How Schools Can Help Prevent It

    The nation's K-12 education sector is heavily invested in educational technology. In 2020 alone, it spent $35.8 billion on technology, mainly to power the massive shift to online learning ...

  12. How Important Is Technology in Education?

    Learn how technology can enhance teaching and learning in the 21st century, and what challenges and opportunities it poses for educators and students. Explore the role of online education, digital tools, and 21st-century skills in the classroom.

  13. The Role of Technology in Education: Enhancing Learning ...

    The goal is to produce a competitive workforce equipped with skills known as the 4Cs (communication, collaboration, critical thinking and problem solving, creativity and innovation). Reforms in ...

  14. The challenges and opportunities of Artificial Intelligence in education

    The paper explores how AI is producing new teaching and learning solutions globally, and how it affects education systems, equity and quality. It also examines the challenges and policy implications of introducing AI in education and preparing students for an AI-powered future.

  15. 5 Problems in Education That Technology Will Soon Solve

    Learn how EdTech can address the challenges of overcrowded classrooms, stagnant spending, lack of teacher innovation, and parent involvement. Discover examples of innovative tools and approaches that use technology to enhance learning and teaching.

  16. The application of educational technology to develop problem-solving

    To develop problem-solving skills, students must be provided with opportunities to practice approaching problems in a non-threatening environment (Kapp, 2007).The rapid development of information and communication technology has turned today's youth into "digital citizens" equipped with effective computer and internet skills (Ferrari, 2013).

  17. What Challenges In Education Can AI Solve Today?

    In addition to the listed challenges, AI in education can address other issues, such as increasing user retention and course completion rates in language learning or reallocating the time of L&D ...

  18. Impacts of digital technologies on education and factors influencing

    Digital technology integration in education systems can be challenging and leadership needs guidance to achieve it. Such guidance can be introduced through the adoption of new methods and techniques in strategic planning for the integration of digital technologies (Ređep, 2021). Even though the role of leaders is vital, the relevant training ...

  19. Education problems that technology can solve

    This article analyses these problems and explores how technology itself can solve them. Problems in the world of education. In the following we present the four most discussed problems in the world of training today: the lack of motivation ; the reduced attention span, the impossibility of creating personalised training,