Home » experimental control important
What An Experimental Control Is And Why It’s So Important
Daniel Nelson
An experimental control is used in scientific experiments to minimize the effect of variables which are not the interest of the study. The control can be an object, population, or any other variable which a scientist would like to “control.”
You may have heard of experimental control, but what is it? Why is an experimental control important? The function of an experimental control is to hold constant the variables that an experimenter isn’t interested in measuring.
This helps scientists ensure that there have been no deviations in the environment of the experiment that could end up influencing the outcome of the experiment, besides the variable they are investigating. Let’s take a closer look at what this means.
You may have ended up here to understand why a control is important in an experiment. A control is important for an experiment because it allows the experiment to minimize the changes in all other variables except the one being tested.
To start with, it is important to define some terminology.
Terminology Of A Scientific Experiment
Negative | The negative control variable is a variable or group where no response is expected |
Positive | A positive control is a group or variable that receives a treatment with a known positive result |
Randomization | A randomized controlled seeks to reduce bias when testing a new treatment |
Blind experiments | In blind experiments, the variable or group does not know the full amount of information about the trial to not skew results |
Double-blind experiments | A double-blind group is where all parties do not know which individual is receiving the experimental treatment |
Randomization is important as it allows for more non-biased results in experiments. Random numbers generators are often used both in scientific studies as well as on 지노 사이트 to make outcomes fairer.
Scientists use the scientific method to ask questions and come to conclusions about the nature of the world. After making an observation about some sort of phenomena they would like to investigate, a scientist asks what the cause of that phenomena could be. The scientist creates a hypothesis, a proposed explanation that answers the question they asked. A hypothesis doesn’t need to be correct, it just has to be testable.
The hypothesis is a prediction about what will happen during the experiment, and if the hypothesis is correct then the results of the experiment should align with the scientist’s prediction. If the results of the experiment do not align with the hypothesis, then a good scientist will take this data into consideration and form a new hypothesis that can better explain the phenomenon in question.
Independent and Dependent Variables
In order to form an effective hypothesis and do meaningful research, the researcher must define the experiment’s independent and dependent variables . The independent variable is the variable which the experimenter either manipulates or controls in an experiment to test the effects of this manipulation on the dependent variable. A dependent variable is a variable being measured to see if the manipulation has any effect.
Photo: frolicsomepl via Pixabay, CC0
For instance, if a researcher wanted to see how temperature impacts the behavior of a certain gas, the temperature they adjust would be the independent variable and the behavior of the gas the dependent variable.
Control Groups and Experimental Groups
There will frequently be two groups under observation in an experiment, the experimental group, and the control group . The control group is used to establish a baseline that the behavior of the experimental group can be compared to. If two groups of people were receiving an experimental treatment for a medical condition, one would be given the actual treatment (the experimental group) and one would typically be given a placebo or sugar pill (the control group).
Without an experimental control group, it is difficult to determine the effects of the independent variable on the dependent variable in an experiment. This is because there can always be outside factors that are influencing the behavior of the experimental group. The function of a control group is to act as a point of comparison, by attempting to ensure that the variable under examination (the impact of the medicine) is the thing responsible for creating the results of an experiment. The control group is holding other possible variables constant, such as the act of seeing a doctor and taking a pill, so only the medicine itself is being tested.
Why Are Experimental Controls So Important?
Experimental controls allow scientists to eliminate varying amounts of uncertainty in their experiments. Whenever a researcher does an experiment and wants to ensure that only the variable they are interested in changing is changing, they need to utilize experimental controls.
Experimental controls have been dubbed “controls” precisely because they allow researchers to control the variables they think might have an impact on the results of the study. If a researcher believes that some outside variables could influence the results of their research, they’ll use a control group to try and hold that thing constant and measure any possible influence it has on the results. It is important to note that there may be many different controls for an experiment, and the more complex a phenomenon under investigation is, the more controls it is likely to have.
Not only do controls establish a baseline that the results of an experiment can be compared to, they also allow researchers to correct for possible errors. If something goes wrong in the experiment, a scientist can check on the controls of the experiment to see if the error had to do with the controls. If so, they can correct this next time the experiment is done.
A Practical Example
Let’s take a look at a concrete example of experimental control. If an experimenter wanted to determine how different soil types impacted the germination period of seeds , they could set up four different pots. Each pot would be filled with a different soil type, planted with seeds, then watered and exposed to sunlight. Measurements would be taken regarding how long it took for the seeds to sprout in the different soil types.
Photo: Kaz via Pixabay, CC0
A control for this experiment might be to fill more pots with just the different types of soil and no seeds or to set aside some seeds in a pot with no soil. The goal is to try and determine that it isn’t something else other than the soil, like the nature of the seeds themselves, the amount of sun they were exposed to, or how much water they are given, that affected how quickly the seeds sprouted. The more variables a researcher controlled for, the surer they could be that it was the type of soil having an impact on the germination period.
Not All Experiments Are Controlled
“It doesn’t matter how beautiful your theory is, it doesn’t matter how smart you are. If it doesn’t agree with experiment, it’s wrong.” — Richard P. Feynman
While experimental controls are important , it is also important to remember that not all experiments are controlled. In the real world, there are going to be limitations on what variables a researcher can control for, and scientists often try to record as much data as they can during an experiment so they can compare factors and variables with one another to see if any variables they didn’t control for might have influenced the outcome. It’s still possible to draw useful data from experiments that don’t have controls, but it is much more difficult to draw meaningful conclusions based on uncontrolled data.
Though it is often impossible in the real world to control for every possible variable, experimental controls are an invaluable part of the scientific process and the more controls an experiment has the better off it is.
← Previous post
Next post →
Related Posts
An official website of the United States government
The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.
The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.
- Publications
- Account settings
The PMC website is updating on October 15, 2024. Learn More or Try it out now .
- Advanced Search
- Journal List
- v.20(10); 2019 Oct 4
Why control an experiment?
John s torday.
1 Department of Pediatrics, Harbor‐UCLA Medical Center, Torrance, CA, USA
František Baluška
2 IZMB, University of Bonn, Bonn, Germany
Empirical research is based on observation and experimentation. Yet, experimental controls are essential for overcoming our sensory limits and generating reliable, unbiased and objective results.
We made a deliberate decision to become scientists and not philosophers, because science offers the opportunity to test ideas using the scientific method. And once we began our formal training as scientists, the greatest challenge beyond formulating a testable or refutable hypothesis was designing appropriate controls for an experiment. In theory, this seems trivial, but in practice, it is often difficult. But where and when did this concept of controlling an experiment start? It is largely attributed to Roger Bacon, who emphasized the use of artificial experiments to provide additional evidence for observations in his Novum Organum Scientiarum in 1620. Other philosophers took up the concept of empirical research: in 1877, Charles Peirce redefined the scientific method in The Fixation of Belief as the most efficient and reliable way to prove a hypothesis. In the 1930s, Karl Popper emphasized the necessity of refuting hypotheses in The Logic of Scientific Discoveries . While these influential works do not explicitly discuss controls as an integral part of experiments, their importance for generating solid and reliable results is nonetheless implicit.
… once we began our formal training as scientists, the greatest challenge beyond formulating a testable or refutable hypothesis was designing appropriate controls for an experiment.
But the scientific method based on experimentation and observation has come under criticism of late in light of the ever more complex problems faced in physics and biology. Chris Anderson, the editor of Wired Magazine, proposed that we should turn to statistical analysis, machine learning, and pattern recognition instead of creating and testing hypotheses, based on the Informatics credo that if you cannot answer the question, you need more data. However, this attitude subsumes that we already have enough data and that we just cannot make sense of it. This assumption is in direct conflict with David Bohm's thesis that there are two “Orders”, the Explicate and Implicate 1 . The Explicate Order is the way in which our subjective sensory systems perceive the world 2 . In contrast, Bohm's Implicate Order would represent the objective reality beyond our perception. This view—that we have only a subjective understanding of reality—dates back to Galileo Galilei who, in 1623, criticized the Aristotelian concept of absolute and objective qualities of our sensory perceptions 3 and to Plato's cave allegory that reality is only what our senses allow us to see.
The only way for systematically overcoming the limits of our sensory apparatus and to get a glimpse of the Implicate Order is through the scientific method, through hypothesis‐testing, controlled experimentation. Beyond the methodology, controlling an experiment is critically important to ensure that the observed results are not just random events; they help scientists to distinguish between the “signal” and the background “noise” that are inherent in natural and living systems. For example, the detection method for the recent discovery of gravitational waves used four‐dimensional reference points to factor out the background noise of the Cosmos. Controls also help to account for errors and variability in the experimental setup and measuring tools: The negative control of an enzyme assay, for instance, tests for any unrelated background signals from the assay or measurement. In short, controls are essential for the unbiased, objective observation and measurement of the dependent variable in response to the experimental setup.
The only way for systematically overcoming the limits of our sensory apparatus […] is through the Scientific Method, through hypothesis‐testing, controlled experimentation.
Nominally, both positive and negative controls are material and procedural; that is, they control for variability of the experimental materials and the procedure itself. But beyond the practical issues to avoid procedural and material artifacts, there is an underlying philosophical question. The need for experimental controls is a subliminal recognition of the relative and subjective nature of the Explicate Order. It requires controls as “reference points” in order to transcend it, and to approximate the Implicate Order.
This is similar to Peter Rowlands’ 4 dictum that everything in the Universe adds up to zero, the universal attractor in mathematics. Prior to the introduction of zero, mathematics lacked an absolute reference point similar to a negative or positive control in an experiment. The same is true of biology, where the cell is the reference point owing to its negative entropy: It appears as an attractor for the energy of its environment. Hence, there is a need for careful controls in biology: The homeostatic balance that is inherent to life varies during the course of an experiment and therefore must be precisely controlled to distinguish noise from signal and approximate the Implicate Order of life.
P < 0.05 tacitly acknowledges the explicate order
Another example of the “subjectivity” of our perception is the level of accuracy we accept for differences between groups. For example, when we use statistical methods to determine if an observed difference between control and experimental groups is a random occurrence or a specific effect, we conventionally consider a p value of less than or equal to 5% as statistically significant; that is, there is a less than 0.05 probability that the effect is random. The efficacy of this arbitrary convention has been debated for decades; suffice to say that despite questioning the validity of that convention, a P value of < 0.05 reflects our acceptance of the subjectivity of our perception of reality.
… controls are essential for the unbiased, objective observation and measurement of the dependent variable in response to the experimental setup.
Thus, if we do away with hypothesis‐testing science in favor of informatics based on data and statistics—referring to Anderson's suggestion—it reflects our acceptance of the noise in the system. However, mere data analysis without any underlying hypothesis is tantamount to “garbage in‐garbage out”, in contrast to well‐controlled imaginative experiments to separate the wheat from the chaff. Albert Einstein was quoted as saying that imagination was more important than knowledge.
The ultimate purpose of the scientific method is to understand ourselves and our place in Nature. Conventionally, we subscribe to the Anthropic Principle, that we are “in” this Universe, whereas the Endosymbiosis Theory, advocated by Lynn Margulis, stipulates that we are “of” this Universe as a result of the assimilation of the physical environment. According to this theory, the organism endogenizes external factors to make them physiologically “useful”, such as iron as the core of the hemoglobin molecule, or ancient bacteria as mitochondria.
… there is a fundamental difference between knowing via believing and knowing based on empirical research.
By applying the developmental mechanism of cell–cell communication to phylogeny, we have revealed the interrelationships between cells and explained evolution from its origin as the unicellular state to multicellularity via cell–cell communication. The ultimate outcome of this research is that consciousness is the product of cellular processes and cell–cell communication in order to react to the environment and better anticipate future events 5 , 6 . Consciousness is an essential prerequisite for transcending the Explicate Order toward the Implicate Order via cellular sensory and cognitive systems that feed an ever‐expanding organismal knowledge about both the environment and itself.
It is here where the empirical approach to understanding nature comes in with its emphasis that knowledge comes only from sensual experience rather than innate ideas or traditions. In the context of the cell or higher systems, knowledge about the environment can only be gained by sensing and analyzing the environment. Empiricism is similar to an equation in which the variables and terms form a product, or a chemical reaction, or a biological process where the substrates, aka sensory data, form products, that is, knowledge. However, it requires another step—imagination, according to Albert Einstein—to transcend the Explicate Order in order to gain insight into the Implicate Order. Take for instance, Dmitri Ivanovich Mendeleev's Periodic Table of Elements: his brilliant insight was not just to use Atomic Number to organize it, but also to consider the chemical reactivities of the Elements by sorting them into columns. By introducing chemical reactivity to the Periodic Table, Mendeleev provided something like the “fourth wall” in Drama, which gives the audience an omniscient, god‐like perspective on what is happening on stage.
The capacity to transcend the subjective Explicate Order to approximate the objective Implicate Order is not unlike Eastern philosophies like Buddhism or Taoism, which were practiced long before the scientific method. An Indian philosopher once pointed out that the Hindus have known for 30,000 years that the Earth revolves around the sun, while the Europeans only realized this a few hundred years ago based on the work of Copernicus, Brahe, and Galileo. However, there is a fundamental difference between knowing via believing and knowing based on empirical research. A similar example is Aristotle's refusal to test whether a large stone would fall faster than a small one, as he knew the answer already 7 . Galileo eventually performed the experiment from the Leaning Tower in Pisa to demonstrate that the fall time of two objects is independent of their mass—which disproved Aristotle's theory of gravity that stipulated that objects fall at a speed proportional to their mass. Again, it demonstrates the power of empiricism and experimentation as formulated by Francis Bacon, John Locke, and others, over intuition and rationalizing.
Even if our scientific instruments provide us with objective data, we still need to apply our consciousness to evaluate and interpret such data.
Following the evolution from the unicellular state to multicellular organisms—and reverse‐engineering it to a minimal‐cell state—reveals that biologic diversity is an artifact of the Explicate Order. Indeed, the unicell seems to be the primary level of selection in the Implicate Order, as it remains proximate to the First Principles of Physiology, namely negative entropy (negentropy), chemiosmosis, and homeostasis. The first two principles are necessary for growth and proliferation, whereas the last reflects Newton's Third Law of Motion that every action has an equal and opposite reaction so as to maintain homeostasis.
All organisms interact with their surroundings and assimilate their experience as epigenetic marks. Such marks extend to the DNA of germ cells and thus change the phenotypic expression of the offspring. The offspring, in turn, interacts with the environment in response to such epigenetic modifications, giving rise to the concept of the phenotype as an agent that actively and purposefully interacts with its environment in order to adapt and survive. This concept of phenotype based on agency linked to the Explicate Order fundamentally differs from its conventional description as a mere set of biologic characteristics. Organisms’ capacities to anticipate future stress situations from past memories are obvious in simple animals such as nematodes, as well as in plants and bacteria 8 , suggesting that the subjective Explicate Order controls both organismal behavior and trans‐generational evolution.
That perspective offers insight to the nature of consciousness: not as a “mind” that is separate from a “body”, but as an endogenization of physical matter, which complies with the Laws of Nature. In other words, consciousness is the physiologic manifestation of endogenized physical surroundings, compartmentalized, and made essential for all organisms by forming the basis for their physiology. Endocytosis and endocytic/synaptic vesicles contribute to endogenization of cellular surroundings, allowing eukaryotic organisms to gain knowledge about the environment. This is true not only for neurons in brains, but also for all eukaryotic cells 5 .
Such a view of consciousness offers insight to our awareness of our physical surroundings as the basis for self‐referential self‐organization. But this is predicated on our capacity to “experiment” with our environment. The burgeoning idea that we are entering the Anthropocene, a man‐made world founded on subjective senses instead of Natural Laws, is a dangerous step away from our innate evolutionary arc. Relying on just our senses and emotions, without experimentation and controls to understand the Implicate Order behind reality, is not just an abandonment of the principles of the Enlightenment, but also endangers the planet and its diversity of life.
Further reading
Anderson C (2008) The End of Theory: the data deluge makes the scientific method obsolete. Wired (December 23, 2008)
Bacon F (1620, 2011) Novum Organum Scientiarum. Nabu Press
Baluška F, Gagliano M, Witzany G (2018) Memory and Learning in Plants. Springer Nature
Charlesworth AG, Seroussi U, Claycomb JM (2019) Next‐Gen learning: the C. elegans approach. Cell 177: 1674–1676
Eliezer Y, Deshe N, Hoch L, Iwanir S, Pritz CO, Zaslaver A (2019) A memory circuit for coping with impending adversity. Curr Biol 29: 1573–1583
Gagliano M, Renton M, Depczynski M, Mancuso S (2014) Experience teaches plants to learn faster and forget slower in environments where it matters. Oecologia 175: 63–72
Gagliano M, Vyazovskiy VV, Borbély AA, Grimonprez M, Depczynski M (2016) Learning by association in plants. Sci Rep 6: 38427
Katz M, Shaham S (2019) Learning and memory: mind over matter in C. elegans . Curr Biol 29: R365‐R367
Kováč L (2007) Information and knowledge in biology – time for reappraisal. Plant Signal Behav 2: 65–73
Kováč L (2008) Bioenergetics – a key to brain and mind. Commun Integr Biol 1: 114–122
Koshland DE Jr (1980) Bacterial chemotaxis in relation to neurobiology. Annu Rev Neurosci 3: 43–75
Lyon P (2015) The cognitive cell: bacterial behavior reconsidered. Front Microbiol 6: 264
Margulis L (2001) The conscious cell. Ann NY Acad Sci 929: 55–70
Maximillian N (2018) The Metaphysics of Science and Aim‐Oriented Empiricism. Springer: New York
Mazzocchi F (2015) Could Big Data be the end of theory in science? EMBO Rep 16: 1250–1255
Moore RS, Kaletsky R, Murphy CT (2019) Piwi/PRG‐1 argonaute and TGF‐β mediate transgenerational learned pathogenic avoidance. Cell 177: 1827–1841
Peirce CS (1877) The Fixation of Belief. Popular Science Monthly 12: 1–15
Pigliucci M (2009) The end of theory in science? EMBO Rep 10: 534
Popper K (1959) The Logic of Scientific Discovery. Routledge: London
Posner R, Toker IA, Antonova O, Star E, Anava S, Azmon E, Hendricks M, Bracha S, Gingold H, Rechavi O (2019) Neuronal small RNAs control behavior transgenerationally. Cell 177: 1814–1826
Russell B (1912) The Problems of Philosophy. Henry Holt and Company: New York
Scerri E (2006) The Periodic Table: It's Story and Significance. Oxford University Press, Oxford
Shapiro JA (2007) Bacteria are small but not stupid: cognition, natural genetic engineering and socio‐bacteriology. Stud Hist Philos Biol Biomed Sci 38: 807–818
Torday JS, Miller WB Jr (2016) Biologic relativity: who is the observer and what is observed? Prog Biophys Mol Biol 121: 29–34
Torday JS, Rehan VK (2017) Evolution, the Logic of Biology. Wiley: Hoboken
Torday JS, Miller WB Jr (2016) Phenotype as agent for epigenetic inheritance. Biology (Basel) 5: 30
Wasserstein RL, Lazar NA (2016) The ASA's statement on p‐values: context, process and purpose. Am Statist 70: 129–133
Yamada T, Yang Y, Valnegri P, Juric I, Abnousi A, Markwalter KH, Guthrie AN, Godec A, Oldenborg A, Hu M, Holy TE, Bonni A (2019) Sensory experience remodels genome architecture in neural circuit to drive motor learning. Nature 569: 708–713
Ladislav Kováč discussed the advantages and drawbacks of the inductive method for science and the logic of scientific discoveries 9 . Obviously, technological advances have enabled scientists to expand the borders of knowledge, and informatics allows us to objectively analyze ever larger data‐sets. It was the telescope that enabled Tycho Brahe, Johannes Kepler, and Galileo Galilei to make accurate observations and infer the motion of the planets. The microscope provided Robert Koch and Louis Pasteur insights into the microbial world and determines the nature of infectious diseases. Particle colliders now give us a glimpse into the birth of the Universe, while DNA sequencing and bioinformatics have enormously advanced biology's goal to understand the molecular basis of life.
However, Kováč also reminds us that Bayesian inferences and reasoning have serious drawbacks, as documented in the instructive example of Bertrand Russell's “inductivist turkey”, which collected large amounts of reproducible data each morning about feeding time. Based on these observations, the turkey correctly predicted the feeding time for the next morning—until Christmas Eve when the turkey's throat was cut 9 . In order to avoid the fate of the “inductivist turkey”, mankind should also rely on Popperian deductive science, namely formulating theories, concepts, and hypotheses, which are either confirmed or refuted via stringent experimentation and proper controls. Even if our scientific instruments provide us with objective data, we still need to apply our consciousness to evaluate and interpret such data. Moreover, before we start using our scientific instruments, we need to pose scientific questions. Therefore, as suggested by Albert Szent‐Györgyi, we need both Dionysian and Apollonian types of scientists 10 . Unfortunately, as was the case in Szent‐Györgyi's times, the Dionysians are still struggling to get proper support.
There have been pleas for reconciling philosophy and science, which parted ways owing to the rise of empiricism. This essay recognizes the centrality experiments and their controls for the advancement of scientific thought, and the attendant advance in philosophy needed to cope with many extant and emerging issues in science and society. We need a common “will” to do so. The rationale is provided herein, if only.
Acknowledgements
John Torday has been a recipient of NIH Grant HL055268. František Baluška is thankful to numerous colleagues for very stimulating discussions on topics analyzed in this article.
EMBO Reports (2019) 20 : e49110 [ PMC free article ] [ PubMed ] [ Google Scholar ]
Contributor Information
John S Torday, Email: ude.alcu@yadrotj .
František Baluška, Email: ed.nnob-inu@aksulab .
Have a language expert improve your writing
Run a free plagiarism check in 10 minutes, generate accurate citations for free.
- Knowledge Base
Methodology
- What Is a Controlled Experiment? | Definitions & Examples
What Is a Controlled Experiment? | Definitions & Examples
Published on April 19, 2021 by Pritha Bhandari . Revised on June 22, 2023.
In experiments , researchers manipulate independent variables to test their effects on dependent variables. In a controlled experiment , all variables other than the independent variable are controlled or held constant so they don’t influence the dependent variable.
Controlling variables can involve:
- holding variables at a constant or restricted level (e.g., keeping room temperature fixed).
- measuring variables to statistically control for them in your analyses.
- balancing variables across your experiment through randomization (e.g., using a random order of tasks).
Table of contents
Why does control matter in experiments, methods of control, problems with controlled experiments, other interesting articles, frequently asked questions about controlled experiments.
Control in experiments is critical for internal validity , which allows you to establish a cause-and-effect relationship between variables. Strong validity also helps you avoid research biases , particularly ones related to issues with generalizability (like sampling bias and selection bias .)
- Your independent variable is the color used in advertising.
- Your dependent variable is the price that participants are willing to pay for a standard fast food meal.
Extraneous variables are factors that you’re not interested in studying, but that can still influence the dependent variable. For strong internal validity, you need to remove their effects from your experiment.
- Design and description of the meal,
- Study environment (e.g., temperature or lighting),
- Participant’s frequency of buying fast food,
- Participant’s familiarity with the specific fast food brand,
- Participant’s socioeconomic status.
Here's why students love Scribbr's proofreading services
Discover proofreading & editing
You can control some variables by standardizing your data collection procedures. All participants should be tested in the same environment with identical materials. Only the independent variable (e.g., ad color) should be systematically changed between groups.
Other extraneous variables can be controlled through your sampling procedures . Ideally, you’ll select a sample that’s representative of your target population by using relevant inclusion and exclusion criteria (e.g., including participants from a specific income bracket, and not including participants with color blindness).
By measuring extraneous participant variables (e.g., age or gender) that may affect your experimental results, you can also include them in later analyses.
After gathering your participants, you’ll need to place them into groups to test different independent variable treatments. The types of groups and method of assigning participants to groups will help you implement control in your experiment.
Control groups
Controlled experiments require control groups . Control groups allow you to test a comparable treatment, no treatment, or a fake treatment (e.g., a placebo to control for a placebo effect ), and compare the outcome with your experimental treatment.
You can assess whether it’s your treatment specifically that caused the outcomes, or whether time or any other treatment might have resulted in the same effects.
To test the effect of colors in advertising, each participant is placed in one of two groups:
- A control group that’s presented with red advertisements for a fast food meal.
- An experimental group that’s presented with green advertisements for the same fast food meal.
Random assignment
To avoid systematic differences and selection bias between the participants in your control and treatment groups, you should use random assignment .
This helps ensure that any extraneous participant variables are evenly distributed, allowing for a valid comparison between groups .
Random assignment is a hallmark of a “true experiment”—it differentiates true experiments from quasi-experiments .
Masking (blinding)
Masking in experiments means hiding condition assignment from participants or researchers—or, in a double-blind study , from both. It’s often used in clinical studies that test new treatments or drugs and is critical for avoiding several types of research bias .
Sometimes, researchers may unintentionally encourage participants to behave in ways that support their hypotheses , leading to observer bias . In other cases, cues in the study environment may signal the goal of the experiment to participants and influence their responses. These are called demand characteristics . If participants behave a particular way due to awareness of being observed (called a Hawthorne effect ), your results could be invalidated.
Using masking means that participants don’t know whether they’re in the control group or the experimental group. This helps you control biases from participants or researchers that could influence your study results.
You use an online survey form to present the advertisements to participants, and you leave the room while each participant completes the survey on the computer so that you can’t tell which condition each participant was in.
Although controlled experiments are the strongest way to test causal relationships, they also involve some challenges.
Difficult to control all variables
Especially in research with human participants, it’s impossible to hold all extraneous variables constant, because every individual has different experiences that may influence their perception, attitudes, or behaviors.
But measuring or restricting extraneous variables allows you to limit their influence or statistically control for them in your study.
Risk of low external validity
Controlled experiments have disadvantages when it comes to external validity —the extent to which your results can be generalized to broad populations and settings.
The more controlled your experiment is, the less it resembles real world contexts. That makes it harder to apply your findings outside of a controlled setting.
There’s always a tradeoff between internal and external validity . It’s important to consider your research aims when deciding whether to prioritize control or generalizability in your experiment.
If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.
- Student’s t -distribution
- Normal distribution
- Null and Alternative Hypotheses
- Chi square tests
- Confidence interval
- Quartiles & Quantiles
- Cluster sampling
- Stratified sampling
- Data cleansing
- Reproducibility vs Replicability
- Peer review
- Prospective cohort study
Research bias
- Implicit bias
- Cognitive bias
- Placebo effect
- Hawthorne effect
- Hindsight bias
- Affect heuristic
- Social desirability bias
Receive feedback on language, structure, and formatting
Professional editors proofread and edit your paper by focusing on:
- Academic style
- Vague sentences
- Style consistency
See an example
In a controlled experiment , all extraneous variables are held constant so that they can’t influence the results. Controlled experiments require:
- A control group that receives a standard treatment, a fake treatment, or no treatment.
- Random assignment of participants to ensure the groups are equivalent.
Depending on your study topic, there are various other methods of controlling variables .
An experimental group, also known as a treatment group, receives the treatment whose effect researchers wish to study, whereas a control group does not. They should be identical in all other ways.
Experimental design means planning a set of procedures to investigate a relationship between variables . To design a controlled experiment, you need:
- A testable hypothesis
- At least one independent variable that can be precisely manipulated
- At least one dependent variable that can be precisely measured
When designing the experiment, you decide:
- How you will manipulate the variable(s)
- How you will control for any potential confounding variables
- How many subjects or samples will be included in the study
- How subjects will be assigned to treatment levels
Experimental design is essential to the internal and external validity of your experiment.
Cite this Scribbr article
If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.
Bhandari, P. (2023, June 22). What Is a Controlled Experiment? | Definitions & Examples. Scribbr. Retrieved September 27, 2024, from https://www.scribbr.com/methodology/controlled-experiment/
Is this article helpful?
Pritha Bhandari
Other students also liked, extraneous variables | examples, types & controls, guide to experimental design | overview, steps, & examples, how to write a lab report, what is your plagiarism score.
Controlled Experiment
Saul McLeod, PhD
Editor-in-Chief for Simply Psychology
BSc (Hons) Psychology, MRes, PhD, University of Manchester
Saul McLeod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.
Learn about our Editorial Process
Olivia Guy-Evans, MSc
Associate Editor for Simply Psychology
BSc (Hons) Psychology, MSc Psychology of Education
Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.
This is when a hypothesis is scientifically tested.
In a controlled experiment, an independent variable (the cause) is systematically manipulated, and the dependent variable (the effect) is measured; any extraneous variables are controlled.
The researcher can operationalize (i.e., define) the studied variables so they can be objectively measured. The quantitative data can be analyzed to see if there is a difference between the experimental and control groups.
What is the control group?
In experiments scientists compare a control group and an experimental group that are identical in all respects, except for one difference – experimental manipulation.
Unlike the experimental group, the control group is not exposed to the independent variable under investigation and so provides a baseline against which any changes in the experimental group can be compared.
Since experimental manipulation is the only difference between the experimental and control groups, we can be sure that any differences between the two are due to experimental manipulation rather than chance.
Randomly allocating participants to independent variable groups means that all participants should have an equal chance of participating in each condition.
The principle of random allocation is to avoid bias in how the experiment is carried out and limit the effects of participant variables.
What are extraneous variables?
The researcher wants to ensure that the manipulation of the independent variable has changed the changes in the dependent variable.
Hence, all the other variables that could affect the dependent variable to change must be controlled. These other variables are called extraneous or confounding variables.
Extraneous variables should be controlled were possible, as they might be important enough to provide alternative explanations for the effects.
In practice, it would be difficult to control all the variables in a child’s educational achievement. For example, it would be difficult to control variables that have happened in the past.
A researcher can only control the current environment of participants, such as time of day and noise levels.
Why conduct controlled experiments?
Scientists use controlled experiments because they allow for precise control of extraneous and independent variables. This allows a cause-and-effect relationship to be established.
Controlled experiments also follow a standardized step-by-step procedure. This makes it easy for another researcher to replicate the study.
Key Terminology
Experimental group.
The group being treated or otherwise manipulated for the sake of the experiment.
Control Group
They receive no treatment and are used as a comparison group.
Ecological validity
The degree to which an investigation represents real-life experiences.
Experimenter effects
These are the ways that the experimenter can accidentally influence the participant through their appearance or behavior.
Demand characteristics
The clues in an experiment lead the participants to think they know what the researcher is looking for (e.g., the experimenter’s body language).
Independent variable (IV)
The variable the experimenter manipulates (i.e., changes) – is assumed to have a direct effect on the dependent variable.
Dependent variable (DV)
Variable the experimenter measures. This is the outcome (i.e., the result) of a study.
Extraneous variables (EV)
All variables that are not independent variables but could affect the results (DV) of the experiment. Extraneous variables should be controlled where possible.
Confounding variables
Variable(s) that have affected the results (DV), apart from the IV. A confounding variable could be an extraneous variable that has not been controlled.
Random Allocation
Randomly allocating participants to independent variable conditions means that all participants should have an equal chance of participating in each condition.
Order effects
Changes in participants’ performance due to their repeating the same or similar test more than once. Examples of order effects include:
(i) practice effect: an improvement in performance on a task due to repetition, for example, because of familiarity with the task;
(ii) fatigue effect: a decrease in performance of a task due to repetition, for example, because of boredom or tiredness.
What is the control in an experiment?
In an experiment , the control is a standard or baseline group not exposed to the experimental treatment or manipulation. It serves as a comparison group to the experimental group, which does receive the treatment or manipulation.
The control group helps to account for other variables that might influence the outcome, allowing researchers to attribute differences in results more confidently to the experimental treatment.
Establishing a cause-and-effect relationship between the manipulated variable (independent variable) and the outcome (dependent variable) is critical in establishing a cause-and-effect relationship between the manipulated variable.
What is the purpose of controlling the environment when testing a hypothesis?
Controlling the environment when testing a hypothesis aims to eliminate or minimize the influence of extraneous variables. These variables other than the independent variable might affect the dependent variable, potentially confounding the results.
By controlling the environment, researchers can ensure that any observed changes in the dependent variable are likely due to the manipulation of the independent variable, not other factors.
This enhances the experiment’s validity, allowing for more accurate conclusions about cause-and-effect relationships.
It also improves the experiment’s replicability, meaning other researchers can repeat the experiment under the same conditions to verify the results.
Why are hypotheses important to controlled experiments?
Hypotheses are crucial to controlled experiments because they provide a clear focus and direction for the research. A hypothesis is a testable prediction about the relationship between variables.
It guides the design of the experiment, including what variables to manipulate (independent variables) and what outcomes to measure (dependent variables).
The experiment is then conducted to test the validity of the hypothesis. If the results align with the hypothesis, they provide evidence supporting it.
The hypothesis may be revised or rejected if the results do not align. Thus, hypotheses are central to the scientific method, driving the iterative inquiry, experimentation, and knowledge advancement process.
What is the experimental method?
The experimental method is a systematic approach in scientific research where an independent variable is manipulated to observe its effect on a dependent variable, under controlled conditions.
- COVID-19 Tracker
- Biochemistry
- Anatomy & Physiology
- Microbiology
- Neuroscience
- Animal Kingdom
- NGSS High School
- Latest News
- Editors’ Picks
- Weekly Digest
- Quotes about Biology
Controlled Experiment
Reviewed by: BD Editors
Controlled Experiment Definition
A controlled experiment is a scientific test that is directly manipulated by a scientist, in order to test a single variable at a time. The variable being tested is the independent variable , and is adjusted to see the effects on the system being studied. The controlled variables are held constant to minimize or stabilize their effects on the subject. In biology, a controlled experiment often includes restricting the environment of the organism being studied. This is necessary to minimize the random effects of the environment and the many variables that exist in the wild.
In a controlled experiment, the study population is often divided into two groups. One group receives a change in a certain variable, while the other group receives a standard environment and conditions. This group is referred to as the control group , and allows for comparison with the other group, known as the experimental group . Many types of controls exist in various experiments, which are designed to ensure that the experiment worked, and to have a basis for comparison. In science, results are only accepted if it can be shown that they are statistically significant . Statisticians can use the difference between the control group and experimental group and the expected difference to determine if the experiment supports the hypothesis , or if the data was simply created by chance.
Examples of Controlled Experiment
Music preference in dogs.
Do dogs have a taste in music? You might have considered this, and science has too. Believe it or not, researchers have actually tested dog’s reactions to various music genres. To set up a controlled experiment like this, scientists had to consider the many variables that affect each dog during testing. The environment the dog is in when listening to music, the volume of the music, the presence of humans, and even the temperature were all variables that the researches had to consider.
In this case, the genre of the music was the independent variable. In other words, to see if dog’s change their behavior in response to different kinds of music, a controlled experiment had to limit the interaction of the other variables on the dogs. Usually, an experiment like this is carried out in the same location, with the same lighting, furniture, and conditions every time. This ensures that the dogs are not changing their behavior in response to the room. To make sure the dogs don’t react to humans or simply the noise of the music, no one else can be in the room and the music must be played at the same volume for each genre. Scientist will develop protocols for their experiment, which will ensure that many other variables are controlled.
This experiment could also split the dogs into two groups, only testing music on one group. The control group would be used to set a baseline behavior, and see how dogs behaved without music. The other group could then be observed and the differences in the group’s behavior could be analyzed. By rating behaviors on a quantitative scale, statistics can be used to analyze the difference in behavior, and see if it was large enough to be considered significant. This basic experiment was carried out on a large number of dogs, analyzing their behavior with a variety of different music genres. It was found that dogs do show more relaxed and calm behaviors when a specific type of music plays. Come to find out, dogs enjoy reggae the most.
Scurvy in Sailors
In the early 1700s, the world was a rapidly expanding place. Ships were being built and sent all over the world, carrying thousands and thousands of sailors. These sailors were mostly fed the cheapest diets possible, not only because it decreased the costs of goods, but also because fresh food is very hard to keep at sea. Today, we understand that lack of essential vitamins and nutrients can lead to severe deficiencies that manifest as disease. One of these diseases is scurvy.
Scurvy is caused by a simple vitamin C deficiency, but the effects can be brutal. Although early symptoms just include general feeling of weakness, the continued lack of vitamin C will lead to a breakdown of the blood cells and vessels that carry the blood. This results in blood leaking from the vessels. Eventually, people bleed to death internally and die. Before controlled experiments were commonplace, a simple physician decided to tackle the problem of scurvy. James Lind, of the Royal Navy, came up with a simple controlled experiment to find the best cure for scurvy.
He separated sailors with scurvy into various groups. He subjected them to the same controlled condition and gave them the same diet, except one item. Each group was subjected to a different treatment or remedy, taken with their food. Some of these remedies included barley water, cider and a regiment of oranges and lemons. This created the first clinical trial , or test of the effectiveness of certain treatments in a controlled experiment. Lind found that the oranges and lemons helped the sailors recover fast, and within a few years the Royal Navy had developed protocols for growing small leafy greens that contained high amounts of vitamin C to feed their sailors.
Related Biology Terms
- Field Experiment – An experiment conducted in nature, outside the bounds of total control.
- Independent Variable – The thing in an experiment being changed or manipulated by the experimenter to see effects on the subject.
- Controlled Variable – A thing that is normalized or standardized across an experiment, to remove it from having an effect on the subject being studied.
- Control Group – A group of subjects in an experiment that receive no independent variable, or a normalized amount, to provide comparison.
Cite This Article
Subscribe to our newsletter, privacy policy, terms of service, scholarship, latest posts, white blood cell, t cell immunity, satellite cells, embryonic stem cells, popular topics, mitochondria, digestive system, translation, endocrine system, photosynthesis, water cycle.
The Scholarly Kitchen
What’s Hot and Cooking In Scholarly Publishing
Understanding Experimental Controls
- Experimentation
Much of the training that scientists receive in graduate school is experiential, you learn how to do an experiment by working in a laboratory and performing experiments. In my opinion, not enough time and effort is devoted to understanding the philosophy and methods of experimental design.
An experiment without the proper controls is meaningless. Controls allow the experimenter to minimize the effects of factors other than the one being tested. It’s how we know an experiment is testing the thing it claims to be testing.
This goes beyond science — controls are necessary for any sort of experimental testing, no matter the subject area. This is often why so many bibliometric studies of the research literature are so problematic. Inadequate controls are often performed which fail to eliminate the effects of confounding factors, leaving the causality of any effect seen to be undetermined.
Novartis’ David Glass has put together the videos below, showing some of the basics of experimental validation and controls (Full disclosure: I was an editor on the first edition of David’s book on experimental design). These short videos offer quick lessons in positive and negative controls, as well as how to validate your experimental system.
These are great starting points, and I highly recommend Glass’ book, now in its second edition , if you want to dig deeper and understand the nuances of the different types of negative and positive controls, not to mention method and reagent controls, subject controls, assumption controls and experimentalist controls.
David Crotty
David Crotty is a Senior Consultant at Clarke & Esposito, a boutique management consulting firm focused on strategic issues related to professional and academic publishing and information services. Previously, David was the Editorial Director, Journals Policy for Oxford University Press. He oversaw journal policy across OUP’s journals program, drove technological innovation, and served as an information officer. David acquired and managed a suite of research society-owned journals with OUP, and before that was the Executive Editor for Cold Spring Harbor Laboratory Press, where he created and edited new science books and journals, along with serving as a journal Editor-in-Chief. He has served on the Board of Directors for the STM Association, the Society for Scholarly Publishing and CHOR, Inc., as well as The AAP-PSP Executive Council. David received his PhD in Genetics from Columbia University and did developmental neuroscience research at Caltech before moving from the bench to publishing.
7 Thoughts on "Understanding Experimental Controls"
We could add one more necessary control in this experiment–controlling for variability in individual response.
In the three videos, the experimenter may only detect differences between groups (or average differences). He is unable to detect changes in individuals. Some participants may be more sensitive to caffeine than others, some may show negative changes, and some may show no changes at all. If we take the blood pressure of participants before they drink coffee, we have a baseline measurement for all individuals. We also have a check on whether the experimenter was able to randomly assign participants to each treatment group.
In effect, each individual is their own control, with a before and after measurement. The experimenter is looking at the change in response of the individual rather than the average effect of the group. It is a much more sensitive way to structure and analyze experiments like this.
- By Phil Davis
- Nov 2, 2018, 8:57 AM
Agreed, these videos only skim the surface (his book goes into much greater detail about a much wider range of controls).
- By David Crotty
- Nov 2, 2018, 9:05 AM
Most experimenters who use random assignment to control and treatment groups have found that post-test only design works as well as pre-/post-test design.
- Nov 2, 2018, 10:01 AM
I don’t see how. By controlling for a potentially large source of variability—the individual participant—statistical tests become much more sensitive to changes than averaging all of that variability by group in a simple post-test design. Second, it is a check to see whether the randomization of participants into groups was successful. In many RTCs in the clinical sciences, there is recruitment bias, allowing for the sicker patients to be placed in the treatment group, for example.
- Nov 2, 2018, 12:55 PM
No mention of Institutional Review Board?! The IRB will raise Dr. Johnson’s own blood pressure.
And then there’s the issue of Dr. Johnson’s White Coat — that might trigger considerable individual variation. (My own blood pressure readings change markedly in the course of a visit to the doctor. )
- Nov 2, 2018, 4:59 PM
I believe that IRB approval is discussed in the video on system validation.
- Nov 2, 2018, 5:02 PM
Late to the debate, but I think those are wonderful. Maybe next Control Kitty will ask just how he assembled all those volunteers for his test to be representative and blinding to minimize bias. Were they self-selected? A bunch of caffeine habituated javaheads who responded to an ad in the coffee shop? I could see another video on randomization and sampling frames. I’m sure David Glass’s book goes into all that, but well, I have a shelf full of related books and I’m unlikely to benefit from and want to buy another. Unless maybe he hooks with another clever video or two. Go Kitty! Except, ~900 views! That’s sad. I might have sneak in citations to them. (I tend to get chastised by reviewers/editors for citing non-scholarly sources.) Something like this might slip under the editor’s radar: Glass, D. 2018. Experimental Design for Biologists: 1. System Validation. Video (4:06 minutes). YouTube. https://www.youtube.com/watch?v=qK9fXYDs–8 [Accessed November 11, 2018].
- By Chris Mebane
- Nov 12, 2018, 12:17 AM
Comments are closed.
Related Articles:
Next Article:
- Activities, Experiments, Online Games, Visual Aids
- Activities, Experiments, and Investigations
- Experimental Design and the Scientific Method
Experimental Design - Independent, Dependent, and Controlled Variables
To view these resources with no ads, please login or subscribe to help support our content development. school subscriptions can access more than 175 downloadable unit bundles in our store for free (a value of $1,500). district subscriptions provide huge group discounts for their schools. email for a quote: [email protected] ..
Scientific experiments are meant to show cause and effect of a phenomena (relationships in nature). The “ variables ” are any factor, trait, or condition that can be changed in the experiment and that can have an effect on the outcome of the experiment.
An experiment can have three kinds of variables: i ndependent, dependent, and controlled .
- The independent variable is one single factor that is changed by the scientist followed by observation to watch for changes. It is important that there is just one independent variable, so that results are not confusing.
- The dependent variable is the factor that changes as a result of the change to the independent variable.
- The controlled variables (or constant variables) are factors that the scientist wants to remain constant if the experiment is to show accurate results. To be able to measure results, each of the variables must be able to be measured.
For example, let’s design an experiment with two plants sitting in the sun side by side. The controlled variables (or constants) are that at the beginning of the experiment, the plants are the same size, get the same amount of sunlight, experience the same ambient temperature and are in the same amount and consistency of soil (the weight of the soil and container should be measured before the plants are added). The independent variable is that one plant is getting watered (1 cup of water) every day and one plant is getting watered (1 cup of water) once a week. The dependent variables are the changes in the two plants that the scientist observes over time.
Can you describe the dependent variable that may result from this experiment? After four weeks, the dependent variable may be that one plant is taller, heavier and more developed than the other. These results can be recorded and graphed by measuring and comparing both plants’ height, weight (removing the weight of the soil and container recorded beforehand) and a comparison of observable foliage.
Using What You Learned: Design another experiment using the two plants, but change the independent variable. Can you describe the dependent variable that may result from this new experiment?
Think of another simple experiment and name the independent, dependent, and controlled variables. Use the graphic organizer included in the PDF below to organize your experiment's variables.
Please Login or Subscribe to access downloadable content.
Citing Research References
When you research information you must cite the reference. Citing for websites is different from citing from books, magazines and periodicals. The style of citing shown here is from the MLA Style Citations (Modern Language Association).
When citing a WEBSITE the general format is as follows. Author Last Name, First Name(s). "Title: Subtitle of Part of Web Page, if appropriate." Title: Subtitle: Section of Page if appropriate. Sponsoring/Publishing Agency, If Given. Additional significant descriptive information. Date of Electronic Publication or other Date, such as Last Updated. Day Month Year of access < URL >.
Here is an example of citing this page:
Amsel, Sheri. "Experimental Design - Independent, Dependent, and Controlled Variables" Exploring Nature Educational Resource ©2005-2024. March 25, 2024 < http://www.exploringnature.org/db/view/Experimental-Design-Independent-Dependent-and-Controlled-Variables >
Exploringnature.org has more than 2,000 illustrated animals. Read about them, color them, label them, learn to draw them.
Sciencing_Icons_Science SCIENCE
Sciencing_icons_biology biology, sciencing_icons_cells cells, sciencing_icons_molecular molecular, sciencing_icons_microorganisms microorganisms, sciencing_icons_genetics genetics, sciencing_icons_human body human body, sciencing_icons_ecology ecology, sciencing_icons_chemistry chemistry, sciencing_icons_atomic & molecular structure atomic & molecular structure, sciencing_icons_bonds bonds, sciencing_icons_reactions reactions, sciencing_icons_stoichiometry stoichiometry, sciencing_icons_solutions solutions, sciencing_icons_acids & bases acids & bases, sciencing_icons_thermodynamics thermodynamics, sciencing_icons_organic chemistry organic chemistry, sciencing_icons_physics physics, sciencing_icons_fundamentals-physics fundamentals, sciencing_icons_electronics electronics, sciencing_icons_waves waves, sciencing_icons_energy energy, sciencing_icons_fluid fluid, sciencing_icons_astronomy astronomy, sciencing_icons_geology geology, sciencing_icons_fundamentals-geology fundamentals, sciencing_icons_minerals & rocks minerals & rocks, sciencing_icons_earth scructure earth structure, sciencing_icons_fossils fossils, sciencing_icons_natural disasters natural disasters, sciencing_icons_nature nature, sciencing_icons_ecosystems ecosystems, sciencing_icons_environment environment, sciencing_icons_insects insects, sciencing_icons_plants & mushrooms plants & mushrooms, sciencing_icons_animals animals, sciencing_icons_math math, sciencing_icons_arithmetic arithmetic, sciencing_icons_addition & subtraction addition & subtraction, sciencing_icons_multiplication & division multiplication & division, sciencing_icons_decimals decimals, sciencing_icons_fractions fractions, sciencing_icons_conversions conversions, sciencing_icons_algebra algebra, sciencing_icons_working with units working with units, sciencing_icons_equations & expressions equations & expressions, sciencing_icons_ratios & proportions ratios & proportions, sciencing_icons_inequalities inequalities, sciencing_icons_exponents & logarithms exponents & logarithms, sciencing_icons_factorization factorization, sciencing_icons_functions functions, sciencing_icons_linear equations linear equations, sciencing_icons_graphs graphs, sciencing_icons_quadratics quadratics, sciencing_icons_polynomials polynomials, sciencing_icons_geometry geometry, sciencing_icons_fundamentals-geometry fundamentals, sciencing_icons_cartesian cartesian, sciencing_icons_circles circles, sciencing_icons_solids solids, sciencing_icons_trigonometry trigonometry, sciencing_icons_probability-statistics probability & statistics, sciencing_icons_mean-median-mode mean/median/mode, sciencing_icons_independent-dependent variables independent/dependent variables, sciencing_icons_deviation deviation, sciencing_icons_correlation correlation, sciencing_icons_sampling sampling, sciencing_icons_distributions distributions, sciencing_icons_probability probability, sciencing_icons_calculus calculus, sciencing_icons_differentiation-integration differentiation/integration, sciencing_icons_application application, sciencing_icons_projects projects, sciencing_icons_news news.
- Share Tweet Email Print
- Home ⋅
- Math ⋅
- Probability & Statistics ⋅
- Independent/Dependent Variables
Definitions of Control, Constant, Independent and Dependent Variables in a Science Experiment
Why Should You Only Test for One Variable at a Time in an Experiment?
The point of an experiment is to help define the cause and effect relationships between components of a natural process or reaction. The factors that can change value during an experiment or between experiments, such as water temperature, are called scientific variables, while those that stay the same, such as acceleration due to gravity at a certain location, are called constants.
The scientific method includes three main types of variables: constants, independent, and dependent variables. In a science experiment, each of these variables define a different measured or constrained aspect of the system.
Constant Variables
Experimental constants are values that should not change either during or between experiments. Many natural forces and properties, such as the speed of light and the atomic weight of gold, are experimental constants. In some cases, a property can be considered constant for the purposes of an experiment even though it technically could change under certain circumstances. The boiling point of water changes with altitude and acceleration due to gravity decreases with distance from the earth, but for experiments in one location these can also be considered constants.
Sometimes also called a controlled variable. A constant is a variable that could change, but that the experimenter intentionally keeps constant in order to more clearly isolate the relationship between the independent variable and the dependent variable.
If extraneous variables are not properly constrained, they are referred to as confounding variables, as they interfere with the interpretation of the results of the experiment.
Some examples of control variables might be found with an experiment examining the relationship between the amount of sunlight plants receive (independent variable) and subsequent plant growth (dependent variable). The experiment should control the amount of water the plants receive and when, what type of soil they are planted in, the type of plant, and as many other different variables as possible. This way, only the amount of light is being changed between trials, and the outcome of the experiment can be directly applied to understanding only this relationship.
Independent Variable
The independent variable in an experiment is the variable whose value the scientist systematically changes in order to see what effect the changes have. A well-designed experiment has only one independent variable in order to maintain a fair test. If the experimenter were to change two or more variables, it would be harder to explain what caused the changes in the experimental results. For example, someone trying to find how quickly water boils could alter the volume of water or the heating temperature, but not both.
Dependent Variable
A dependent variable – sometimes called a responding variable – is what the experimenter observes to find the effect of systematically varying the independent variable. While an experiment may have multiple dependent variables, it is often wisest to focus the experiment on one dependent variable so that the relationship between it and the independent variable can be clearly isolated. For example, an experiment could examine how much sugar can dissolve in a set volume of water at various temperatures. The experimenter systematically alters temperature (independent variable) to see its effect on the quantity of dissolved sugar (dependent variable).
Control Groups
In some experiment designs, there might be one effect or manipulated variable that is being measured. Sometimes there might be one collection of measurements or subjects completely separated from this variable called the control group. These control groups are held as a standard to measure the results of a scientific experiment.
An example of such a situation might be a study regarding the effectiveness of a certain medication. There might be multiple experimental groups that receive the medication in varying doses and applications, and there would likely be a control group that does not receive the medication at all.
Representing Results
Identifying which variables are independent, dependent, and controlled helps to collect data, perform useful experiments, and accurately communicate results. When graphing or displaying data, it is crucial to represent data accurately and understandably. Typically, the independent variable goes on the x-axis, and the dependent variable goes on the y-axis.
Related Articles
Why should you only test for one variable at a time..., difference between manipulative & responding variable, what is the meaning of variables in research, what is the difference between a control & a controlled..., what are constants & controls of a science project..., what is a constant in a science fair project, what are comparative experiments, how to grow a plant from a bean as a science project, how to calculate experimental value, what is an independent variable in quantitative research, what is a responding variable in science projects, what is a positive control in microbiology, how to write a testable hypothesis, how to use the pearson correlation coefficient, 5 components of a well-designed scientific experiment, distinguishing between descriptive & causal studies, how to write a protocol for biology experiments, what is a standardized variable in biology, school science projects for juniors, how to write a summary on a science project.
- ScienceBuddies.org: Variables in Your Science Fair Project
About the Author
Benjamin Twist has worked as a writer, editor and consultant since 2007. He writes fiction and nonfiction for online and print publications, as well as offering one-on-one writing consultations and tutoring. Twist holds a Master of Arts in Bible exposition from Columbia International University.
Experiment Definition in Science – What Is a Science Experiment?
In science, an experiment is simply a test of a hypothesis in the scientific method . It is a controlled examination of cause and effect. Here is a look at what a science experiment is (and is not), the key factors in an experiment, examples, and types of experiments.
Experiment Definition in Science
By definition, an experiment is a procedure that tests a hypothesis. A hypothesis, in turn, is a prediction of cause and effect or the predicted outcome of changing one factor of a situation. Both the hypothesis and experiment are components of the scientific method. The steps of the scientific method are:
- Make observations.
- Ask a question or identify a problem.
- State a hypothesis.
- Perform an experiment that tests the hypothesis.
- Based on the results of the experiment, either accept or reject the hypothesis.
- Draw conclusions and report the outcome of the experiment.
Key Parts of an Experiment
The two key parts of an experiment are the independent and dependent variables. The independent variable is the one factor that you control or change in an experiment. The dependent variable is the factor that you measure that responds to the independent variable. An experiment often includes other types of variables , but at its heart, it’s all about the relationship between the independent and dependent variable.
Examples of Experiments
Fertilizer and plant size.
For example, you think a certain fertilizer helps plants grow better. You’ve watched your plants grow and they seem to do better when they have the fertilizer compared to when they don’t. But, observations are only the beginning of science. So, you state a hypothesis: Adding fertilizer increases plant size. Note, you could have stated the hypothesis in different ways. Maybe you think the fertilizer increases plant mass or fruit production, for example. However you state the hypothesis, it includes both the independent and dependent variables. In this case, the independent variable is the presence or absence of fertilizer. The dependent variable is the response to the independent variable, which is the size of the plants.
Now that you have a hypothesis, the next step is designing an experiment that tests it. Experimental design is very important because the way you conduct an experiment influences its outcome. For example, if you use too small of an amount of fertilizer you may see no effect from the treatment. Or, if you dump an entire container of fertilizer on a plant you could kill it! So, recording the steps of the experiment help you judge the outcome of the experiment and aid others who come after you and examine your work. Other factors that might influence your results might include the species of plant and duration of the treatment. Record any conditions that might affect the outcome. Ideally, you want the only difference between your two groups of plants to be whether or not they receive fertilizer. Then, measure the height of the plants and see if there is a difference between the two groups.
Salt and Cookies
You don’t need a lab for an experiment. For example, consider a baking experiment. Let’s say you like the flavor of salt in your cookies, but you’re pretty sure the batch you made using extra salt fell a bit flat. If you double the amount of salt in a recipe, will it affect their size? Here, the independent variable is the amount of salt in the recipe and the dependent variable is cookie size.
Test this hypothesis with an experiment. Bake cookies using the normal recipe (your control group ) and bake some using twice the salt (the experimental group). Make sure it’s the exact same recipe. Bake the cookies at the same temperature and for the same time. Only change the amount of salt in the recipe. Then measure the height or diameter of the cookies and decide whether to accept or reject the hypothesis.
Examples of Things That Are Not Experiments
Based on the examples of experiments, you should see what is not an experiment:
- Making observations does not constitute an experiment. Initial observations often lead to an experiment, but are not a substitute for one.
- Making a model is not an experiment.
- Neither is making a poster.
- Just trying something to see what happens is not an experiment. You need a hypothesis or prediction about the outcome.
- Changing a lot of things at once isn’t an experiment. You only have one independent and one dependent variable. However, in an experiment, you might suspect the independent variable has an effect on a separate. So, you design a new experiment to test this.
Types of Experiments
There are three main types of experiments: controlled experiments, natural experiments, and field experiments,
- Controlled experiment : A controlled experiment compares two groups of samples that differ only in independent variable. For example, a drug trial compares the effect of a group taking a placebo (control group) against those getting the drug (the treatment group). Experiments in a lab or home generally are controlled experiments
- Natural experiment : Another name for a natural experiment is a quasi-experiment. In this type of experiment, the researcher does not directly control the independent variable, plus there may be other variables at play. Here, the goal is establishing a correlation between the independent and dependent variable. For example, in the formation of new elements a scientist hypothesizes that a certain collision between particles creates a new atom. But, other outcomes may be possible. Or, perhaps only decay products are observed that indicate the element, and not the new atom itself. Many fields of science rely on natural experiments, since controlled experiments aren’t always possible.
- Field experiment : While a controlled experiments takes place in a lab or other controlled setting, a field experiment occurs in a natural setting. Some phenomena cannot be readily studied in a lab or else the setting exerts an influence that affects the results. So, a field experiment may have higher validity. However, since the setting is not controlled, it is also subject to external factors and potential contamination. For example, if you study whether a certain plumage color affects bird mate selection, a field experiment in a natural environment eliminates the stressors of an artificial environment. Yet, other factors that could be controlled in a lab may influence results. For example, nutrition and health are controlled in a lab, but not in the field.
- Bailey, R.A. (2008). Design of Comparative Experiments . Cambridge: Cambridge University Press. ISBN 9780521683579.
- di Francia, G. Toraldo (1981). The Investigation of the Physical World . Cambridge University Press. ISBN 0-521-29925-X.
- Hinkelmann, Klaus; Kempthorne, Oscar (2008). Design and Analysis of Experiments. Volume I: Introduction to Experimental Design (2nd ed.). Wiley. ISBN 978-0-471-72756-9.
- Holland, Paul W. (December 1986). “Statistics and Causal Inference”. Journal of the American Statistical Association . 81 (396): 945–960. doi: 10.2307/2289064
- Stohr-Hunt, Patricia (1996). “An Analysis of Frequency of Hands-on Experience and Science Achievement”. Journal of Research in Science Teaching . 33 (1): 101–109. doi: 10.1002/(SICI)1098-2736(199601)33:1<101::AID-TEA6>3.0.CO;2-Z
Related Posts
Six Steps of the Scientific Method
Learn What Makes Each Stage Important
ThoughtCo. / Hugo Lin
- Scientific Method
- Chemical Laws
- Periodic Table
- Projects & Experiments
- Biochemistry
- Physical Chemistry
- Medical Chemistry
- Chemistry In Everyday Life
- Famous Chemists
- Activities for Kids
- Abbreviations & Acronyms
- Weather & Climate
- Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
- B.A., Physics and Mathematics, Hastings College
The scientific method is a systematic way of learning about the world around us. The key difference between the scientific method and other ways of acquiring knowledge is that, when using the scientific method, we make hypotheses and then test them with an experiment.
Anyone can use the scientific method to acquire knowledge by asking questions and then working to find the answers to those questions. Below are the six steps involved in the scientific method and variables you may encounter when working with this method.
The Six Steps
The number of steps in the scientific method can vary from one description to another (which mainly happens when data and analysis are separated into separate steps), however, below is a fairly standard list of the six steps you'll likely be expected to know for any science class:
- Purpose/Question Ask a question.
- Research Conduct background research. Write down your sources so you can cite your references. In the modern era, you might conduct much of your research online. As you read articles and papers online, ensure you scroll to the bottom of the text to check the author's references. Even if you can't access the full text of a published article, you can usually view the abstract to see the summary of other experiments . Interview experts on a topic. The more you know about a subject, the easier it'll be to conduct your investigation.
- Hypothesis Propose a hypothesis . This is a sort of educated guess about what you expect your research to reveal. A hypothesis is a statement used to predict the outcome of an experiment. Usually, a hypothesis is written in terms of cause and effect. Alternatively, it may describe the relationship between two phenomena. The null hypothesis or the no-difference hypothesis is one type of hypothesis that's easy to test because it assumes changing a variable will not affect the outcome. In reality, you probably expect a change, but rejecting a hypothesis may be more useful than accepting one.
- Experiment Design and experiment to test your hypothesis. An experiment has an independent and dependent variable. You change or control the independent variable and record the effect it has on the dependent variable . It's important to change only one variable for an experiment rather than try to combine the effects of variables in an experiment. For example, if you want to test the effects of light intensity and fertilizer concentration on the growth rate of a plant, you're looking at two separate experiments.
- Data/Analysis Record observations and analyze the meaning of the data. Often, you'll prepare a table or graph of the data. Don't throw out data points you think are bad or that don't support your predictions. Some of the most incredible discoveries in science were made because the data looked wrong! Once you have the data, you may need to perform a mathematical analysis to support or refute your hypothesis.
- Conclusion Conclude whether to accept or reject your hypothesis. There's no right or wrong outcome to an experiment, so either result is fine. Accepting a hypothesis doesn't necessarily mean it's correct! Sometimes repeating an experiment may give a different result. In other cases, a hypothesis may predict an outcome, yet you might draw an incorrect conclusion. Communicate your results. You can compile your results into a lab report or formally submit them as a paper . Whether you accept or reject the hypothesis, you likely learned something about the subject and may wish to revise the original hypothesis or form a new one for a future experiment.
When Are There Seven Steps?
Some teach the scientific method with seven steps instead of six. In the seven-step model, the first step is to make observations. Even if you don't make observations formally, you should think about prior experiences with a subject to ask a question or solve a problem.
Formal observations are a type of brainstorming that can help you find an idea and form a hypothesis. Observe your subject and record everything about it. Include colors, timing, sounds, temperatures, changes, behavior, and anything that strikes you as interesting or significant.
When you design an experiment, you're controlling and measuring variables. There are three types of variables:
- Controlled Variables: You can have as many controlled variables as you like. These are parts of the experiment that you try to keep constant throughout an experiment so they won't interfere with your test. Writing down controlled variables is a good idea because it helps make your experiment reproducible , which is important in science! If you have trouble duplicating results from one experiment to another, there may be a controlled variable you missed.
- Independent Variable: This is the variable you control.
- Dependent Variable: This is the variable you measure. It's called the dependent variable because it depends on the independent variable.
- Null Hypothesis Examples
- Scientific Method Flow Chart
- Random Error vs. Systematic Error
- What Is an Experimental Constant?
- Scientific Variable
- What Is a Hypothesis? (Science)
- What Are the Elements of a Good Hypothesis?
- What Are Examples of a Hypothesis?
- What Is a Testable Hypothesis?
- Scientific Hypothesis Examples
- Scientific Method Vocabulary Terms
- Understanding Simple vs Controlled Experiments
- The Role of a Controlled Variable in an Experiment
- What Is the Difference Between a Control Variable and Control Group?
- What Is a Controlled Experiment?
- DRY MIX Experiment Variables Acronym
IMAGES
VIDEO
COMMENTS
By. Daniel Nelson. An experimental control is used in scientific experiments to minimize the effect of variables which are not the interest of the study. The control can be an object, population, or any other variable which a scientist would like to "control.". You may have heard of experimental control, but what is it?
Prior to the introduction of zero, mathematics lacked an absolute reference point similar to a negative or positive control in an experiment. The same is true of biology, where the cell is the reference point owing to its negative entropy: It appears as an attractor for the energy of its environment. ... The ultimate purpose of the scientific ...
A scientific control is an experiment or observation designed to minimize the effects of variables other than the independent variable ... Many controls are specific to the type of experiment being performed, as in the molecular markers used in SDS-PAGE experiments, and may simply have the purpose of ensuring that the equipment is working properly.
A single experiment may contain many control variables. Unlike the independent and dependent variables, control variables aren't a part of the experiment, but they are important because they could affect the outcome. Take a look at the difference between a control variable and control group and see examples of control variables.
Why does control matter in experiments? Control in experiments is critical for internal validity, which allows you to establish a cause-and-effect relationship between variables.Strong validity also helps you avoid research biases, particularly ones related to issues with generalizability (like sampling bias and selection bias.). Example: Experiment You're studying the effects. of colors in ...
Search. A controlled experiment aims to demonstrate causation between variables by manipulating an independent variable while controlling all other factors that could influence the results. Its purpose is to show that changes in one variable (the independent variable) directly cause changes in another variable (the dependent variable).
Controlled Experiment Definition. A controlled experiment is a scientific test that is directly manipulated by a scientist, in order to test a single variable at a time. The variable being tested is the independent variable, and is adjusted to see the effects on the system being studied. The controlled variables are held constant to minimize or ...
Updated on August 05, 2024. A controlled variable is one which the researcher holds constant (controls) during an experiment. It is also known as a constant variable or simply as a "control." The control variable is not part of an experiment itself—it is neither the independent nor dependent variable —but it is important because it can have ...
An experiment without the proper controls is meaningless. Controls allow the experimenter to minimize the effects of factors other than the one being tested. It's how we know an experiment is testing the thing it claims to be testing. This goes beyond science — controls are necessary for any sort of experimental testing, no matter the ...
philosophers, because science offers the opportunity to test ideas using the scientific method. And once we began our formal training as scientists, the greatest challenge beyond formulating a testable or refutable hypothesis was designing appropri-ate controls for an experiment. In theory, this seems trivial, but in practice, it is often ...
It's used as a benchmark or a point of comparison against which other test results are measured. Controls are typically used in science experiments, business research, cosmetic testing and medication testing. For example, when a new type of medicine is tested, the group that receives the medication is called the "experimented" group.
Controlled Experiment. A controlled experiment is simply an experiment in which all factors are held constant except for one: the independent variable. A common type of controlled experiment compares a control group against an experimental group. All variables are identical between the two groups except for the factor being tested.
Scientific experiments are meant to show cause and effect of a phenomena (relationships in nature). The "variables" are any factor, trait, or condition that can be changed in the experiment and that can have an effect on the outcome of the experiment. An experiment can have three kinds of variables: independent, dependent, and controlled.. The independent variable is one single factor that ...
The steps are: Ask a question. Research the topic. Develop a hypothesis. Test with an experiment. Analyze data. Report conclusions. Developing a controlled experiment is one way to test a ...
A single experiment may include multiple experimental groups, which may all be compared against the control group. The purpose of having a control is to rule out other factors which may influence the results of an experiment. Not all experiments include a control group, but those that do are called "controlled experiments." A placebo may also ...
The control group in an experiment is the set of subjects that do not receive the treatment. The control group is the set of subjects that does not receive the treatment in a study. In other words, it is the group where the independent variable is held constant. This is important because the control group is a baseline for measuring the effects of a treatment in an experiment or study.
If you're seeing this message, it means we're having trouble loading external resources on our website. If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.
The point of an experiment is to help define the cause and effect relationships between components of a natural process or reaction. The factors that can change value during an experiment or between experiments, such as water temperature, are called scientific variables, while those that stay the same, such as acceleration due to gravity at a certain location, are called constants.
Updated on September 07, 2024. A control group in a scientific experiment is a group separated from the rest of the experiment, where the independent variable being tested cannot influence the results. This isolates the independent variable's effects on the experiment and can help rule out alternative explanations of the experimental results.
The Scientific Method starts with aquestion, and background research is conducted to try to answer that question. If you want to find evidence for an answer or an answer itself then you construct a hypothesis and test that hypothesis in an experiment. If the experiment works and the data is analyzed you can either prove or disprove your hypothesis.
Experiment Definition in Science. By definition, an experiment is a procedure that tests a hypothesis. A hypothesis, in turn, is a prediction of cause and effect or the predicted outcome of changing one factor of a situation. Both the hypothesis and experiment are components of the scientific method. The steps of the scientific method are:
The number of steps in the scientific method can vary from one description to another (which mainly happens when data and analysis are separated into separate steps), however, below is a fairly standard list of the six steps you'll likely be expected to know for any science class: Purpose/Question. Ask a question. Research.