Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.
5 Teaching Mathematics Through Problem Solving
Janet Stramel
In his book “How to Solve It,” George Pólya (1945) said, “One of the most important tasks of the teacher is to help his students. This task is not quite easy; it demands time, practice, devotion, and sound principles. The student should acquire as much experience of independent work as possible. But if he is left alone with his problem without any help, he may make no progress at all. If the teacher helps too much, nothing is left to the student. The teacher should help, but not too much and not too little, so that the student shall have a reasonable share of the work.” (page 1)
What is a problem in mathematics? A problem is “any task or activity for which the students have no prescribed or memorized rules or methods, nor is there a perception by students that there is a specific ‘correct’ solution method” (Hiebert, et. al., 1997). Problem solving in mathematics is one of the most important topics to teach; learning to problem solve helps students develop a sense of solving real-life problems and apply mathematics to real world situations. It is also used for a deeper understanding of mathematical concepts. Learning “math facts” is not enough; students must also learn how to use these facts to develop their thinking skills.
According to NCTM (2010), the term “problem solving” refers to mathematical tasks that have the potential to provide intellectual challenges for enhancing students’ mathematical understanding and development. When you first hear “problem solving,” what do you think about? Story problems or word problems? Story problems may be limited to and not “problematic” enough. For example, you may ask students to find the area of a rectangle, given the length and width. This type of problem is an exercise in computation and can be completed mindlessly without understanding the concept of area. Worthwhile problems includes problems that are truly problematic and have the potential to provide contexts for students’ mathematical development.
There are three ways to solve problems: teaching for problem solving, teaching about problem solving, and teaching through problem solving.
Teaching for problem solving begins with learning a skill. For example, students are learning how to multiply a two-digit number by a one-digit number, and the story problems you select are multiplication problems. Be sure when you are teaching for problem solving, you select or develop tasks that can promote the development of mathematical understanding.
Teaching about problem solving begins with suggested strategies to solve a problem. For example, “draw a picture,” “make a table,” etc. You may see posters in teachers’ classrooms of the “Problem Solving Method” such as: 1) Read the problem, 2) Devise a plan, 3) Solve the problem, and 4) Check your work. There is little or no evidence that students’ problem-solving abilities are improved when teaching about problem solving. Students will see a word problem as a separate endeavor and focus on the steps to follow rather than the mathematics. In addition, students will tend to use trial and error instead of focusing on sense making.
Teaching through problem solving focuses students’ attention on ideas and sense making and develops mathematical practices. Teaching through problem solving also develops a student’s confidence and builds on their strengths. It allows for collaboration among students and engages students in their own learning.
Consider the following worthwhile-problem criteria developed by Lappan and Phillips (1998):
- The problem has important, useful mathematics embedded in it.
- The problem requires high-level thinking and problem solving.
- The problem contributes to the conceptual development of students.
- The problem creates an opportunity for the teacher to assess what his or her students are learning and where they are experiencing difficulty.
- The problem can be approached by students in multiple ways using different solution strategies.
- The problem has various solutions or allows different decisions or positions to be taken and defended.
- The problem encourages student engagement and discourse.
- The problem connects to other important mathematical ideas.
- The problem promotes the skillful use of mathematics.
- The problem provides an opportunity to practice important skills.
Of course, not every problem will include all of the above. Sometimes, you will choose a problem because your students need an opportunity to practice a certain skill.
Key features of a good mathematics problem includes:
- It must begin where the students are mathematically.
- The feature of the problem must be the mathematics that students are to learn.
- It must require justifications and explanations for both answers and methods of solving.
Problem solving is not a neat and orderly process. Think about needlework. On the front side, it is neat and perfect and pretty.
But look at the b ack.
It is messy and full of knots and loops. Problem solving in mathematics is also like this and we need to help our students be “messy” with problem solving; they need to go through those knots and loops and learn how to solve problems with the teacher’s guidance.
When you teach through problem solving , your students are focused on ideas and sense-making and they develop confidence in mathematics!
Mathematics Tasks and Activities that Promote Teaching through Problem Solving
Choosing the Right Task
Selecting activities and/or tasks is the most significant decision teachers make that will affect students’ learning. Consider the following questions:
- Teachers must do the activity first. What is problematic about the activity? What will you need to do BEFORE the activity and AFTER the activity? Additionally, think how your students would do the activity.
- What mathematical ideas will the activity develop? Are there connections to other related mathematics topics, or other content areas?
- Can the activity accomplish your learning objective/goals?
Low Floor High Ceiling Tasks
By definition, a “ low floor/high ceiling task ” is a mathematical activity where everyone in the group can begin and then work on at their own level of engagement. Low Floor High Ceiling Tasks are activities that everyone can begin and work on based on their own level, and have many possibilities for students to do more challenging mathematics. One gauge of knowing whether an activity is a Low Floor High Ceiling Task is when the work on the problems becomes more important than the answer itself, and leads to rich mathematical discourse [Hover: ways of representing, thinking, talking, agreeing, and disagreeing; the way ideas are exchanged and what the ideas entail; and as being shaped by the tasks in which students engage as well as by the nature of the learning environment].
The strengths of using Low Floor High Ceiling Tasks:
- Allows students to show what they can do, not what they can’t.
- Provides differentiation to all students.
- Promotes a positive classroom environment.
- Advances a growth mindset in students
- Aligns with the Standards for Mathematical Practice
Examples of some Low Floor High Ceiling Tasks can be found at the following sites:
- YouCubed – under grades choose Low Floor High Ceiling
- NRICH Creating a Low Threshold High Ceiling Classroom
- Inside Mathematics Problems of the Month
Math in 3-Acts
Math in 3-Acts was developed by Dan Meyer to spark an interest in and engage students in thought-provoking mathematical inquiry. Math in 3-Acts is a whole-group mathematics task consisting of three distinct parts:
Act One is about noticing and wondering. The teacher shares with students an image, video, or other situation that is engaging and perplexing. Students then generate questions about the situation.
In Act Two , the teacher offers some information for the students to use as they find the solutions to the problem.
Act Three is the “reveal.” Students share their thinking as well as their solutions.
“Math in 3 Acts” is a fun way to engage your students, there is a low entry point that gives students confidence, there are multiple paths to a solution, and it encourages students to work in groups to solve the problem. Some examples of Math in 3-Acts can be found at the following websites:
- Dan Meyer’s Three-Act Math Tasks
- Graham Fletcher3-Act Tasks ]
- Math in 3-Acts: Real World Math Problems to Make Math Contextual, Visual and Concrete
Number Talks
Number talks are brief, 5-15 minute discussions that focus on student solutions for a mental math computation problem. Students share their different mental math processes aloud while the teacher records their thinking visually on a chart or board. In addition, students learn from each other’s strategies as they question, critique, or build on the strategies that are shared.. To use a “number talk,” you would include the following steps:
- The teacher presents a problem for students to solve mentally.
- Provide adequate “ wait time .”
- The teacher calls on a students and asks, “What were you thinking?” and “Explain your thinking.”
- For each student who volunteers to share their strategy, write their thinking on the board. Make sure to accurately record their thinking; do not correct their responses.
- Invite students to question each other about their strategies, compare and contrast the strategies, and ask for clarification about strategies that are confusing.
“Number Talks” can be used as an introduction, a warm up to a lesson, or an extension. Some examples of Number Talks can be found at the following websites:
- Inside Mathematics Number Talks
- Number Talks Build Numerical Reasoning
Saying “This is Easy”
“This is easy.” Three little words that can have a big impact on students. What may be “easy” for one person, may be more “difficult” for someone else. And saying “this is easy” defeats the purpose of a growth mindset classroom, where students are comfortable making mistakes.
When the teacher says, “this is easy,” students may think,
- “Everyone else understands and I don’t. I can’t do this!”
- Students may just give up and surrender the mathematics to their classmates.
- Students may shut down.
Instead, you and your students could say the following:
- “I think I can do this.”
- “I have an idea I want to try.”
- “I’ve seen this kind of problem before.”
Tracy Zager wrote a short article, “This is easy”: The Little Phrase That Causes Big Problems” that can give you more information. Read Tracy Zager’s article here.
Using “Worksheets”
Do you want your students to memorize concepts, or do you want them to understand and apply the mathematics for different situations?
What is a “worksheet” in mathematics? It is a paper and pencil assignment when no other materials are used. A worksheet does not allow your students to use hands-on materials/manipulatives [Hover: physical objects that are used as teaching tools to engage students in the hands-on learning of mathematics]; and worksheets are many times “naked number” with no context. And a worksheet should not be used to enhance a hands-on activity.
Students need time to explore and manipulate materials in order to learn the mathematics concept. Worksheets are just a test of rote memory. Students need to develop those higher-order thinking skills, and worksheets will not allow them to do that.
One productive belief from the NCTM publication, Principles to Action (2014), states, “Students at all grade levels can benefit from the use of physical and virtual manipulative materials to provide visual models of a range of mathematical ideas.”
You may need an “activity sheet,” a “graphic organizer,” etc. as you plan your mathematics activities/lessons, but be sure to include hands-on manipulatives. Using manipulatives can
- Provide your students a bridge between the concrete and abstract
- Serve as models that support students’ thinking
- Provide another representation
- Support student engagement
- Give students ownership of their own learning.
Adapted from “ The Top 5 Reasons for Using Manipulatives in the Classroom ”.
any task or activity for which the students have no prescribed or memorized rules or methods, nor is there a perception by students that there is a specific ‘correct’ solution method
should be intriguing and contain a level of challenge that invites speculation and hard work, and directs students to investigate important mathematical ideas and ways of thinking toward the learning
involves teaching a skill so that a student can later solve a story problem
when we teach students how to problem solve
teaching mathematics content through real contexts, problems, situations, and models
a mathematical activity where everyone in the group can begin and then work on at their own level of engagement
20 seconds to 2 minutes for students to make sense of questions
Mathematics Methods for Early Childhood Copyright © 2021 by Janet Stramel is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.
Share This Book
Teaching Problem Solving in Math
- Freebies , Math , Planning
Every year my students can be fantastic at math…until they start to see math with words. For some reason, once math gets translated into reading, even my best readers start to panic. There is just something about word problems, or problem-solving, that causes children to think they don’t know how to complete them.
Every year in math, I start off by teaching my students problem-solving skills and strategies. Every year they moan and groan that they know them. Every year – paragraph one above. It was a vicious cycle. I needed something new.
I put together a problem-solving unit that would focus a bit more on strategies and steps in hopes that that would create problem-solving stars.
The Problem Solving Strategies
First, I wanted to make sure my students all learned the different strategies to solve problems, such as guess-and-check, using visuals (draw a picture, act it out, and modeling it), working backward, and organizational methods (tables, charts, and lists). In the past, I had used worksheet pages that would introduce one and provide the students with plenty of problems practicing that one strategy. I did like that because students could focus more on practicing the strategy itself, but I also wanted students to know when to use it, too, so I made sure they had both to practice.
I provided students with plenty of practice of the strategies, such as in this guess-and-check game.
There’s also this visuals strategy wheel practice.
I also provided them with paper dolls and a variety of clothing to create an organized list to determine just how many outfits their “friend” would have.
Then, as I said above, we practiced in a variety of ways to make sure we knew exactly when to use them. I really wanted to make sure they had this down!
Anyway, after I knew they had down the various strategies and when to use them, then we went into the actual problem-solving steps.
The Problem Solving Steps
I wanted students to understand that when they see a story problem, it isn’t scary. Really, it’s just the equation written out in words in a real-life situation. Then, I provided them with the “keys to success.”
S tep 1 – Understand the Problem. To help students understand the problem, I provided them with sample problems, and together we did five important things:
- read the problem carefully
- restated the problem in our own words
- crossed out unimportant information
- circled any important information
- stated the goal or question to be solved
We did this over and over with example problems.
Once I felt the students had it down, we practiced it in a game of problem-solving relay. Students raced one another to see how quickly they could get down to the nitty-gritty of the word problems. We weren’t solving the problems – yet.
Then, we were on to Step 2 – Make a Plan . We talked about how this was where we were going to choose which strategy we were going to use. We also discussed how this was where we were going to figure out what operation to use. I taught the students Sheila Melton’s operation concept map.
We talked about how if you know the total and know if it is equal or not, that will determine what operation you are doing. So, we took an example problem, such as:
Sheldon wants to make a cupcake for each of his 28 classmates. He can make 7 cupcakes with one box of cupcake mix. How many boxes will he need to buy?
We started off by asking ourselves, “Do we know the total?” We know there are a total of 28 classmates. So, yes, we are separating. Then, we ask, “Is it equal?” Yes, he wants to make a cupcake for EACH of his classmates. So, we are dividing: 28 divided by 7 = 4. He will need to buy 4 boxes. (I actually went ahead and solved it here – which is the next step, too.)
Step 3 – Solving the problem . We talked about how solving the problem involves the following:
- taking our time
- working the problem out
- showing all our work
- estimating the answer
- using thinking strategies
We talked specifically about thinking strategies. Just like in reading, there are thinking strategies in math. I wanted students to be aware that sometimes when we are working on a problem, a particular strategy may not be working, and we may need to switch strategies. We also discussed that sometimes we may need to rethink the problem, to think of related content, or to even start over. We discussed these thinking strategies:
- switch strategies or try a different one
- rethink the problem
- think of related content
- decide if you need to make changes
- check your work
- but most important…don’t give up!
To make sure they were getting in practice utilizing these thinking strategies, I gave each group chart paper with a letter from a fellow “student” (not a real student), and they had to give advice on how to help them solve their problem using the thinking strategies above.
Finally, Step 4 – Check It. This is the step that students often miss. I wanted to emphasize just how important it is! I went over it with them, discussing that when they check their problems, they should always look for these things:
- compare your answer to your estimate
- check for reasonableness
- check your calculations
- add the units
- restate the question in the answer
- explain how you solved the problem
Then, I gave students practice cards. I provided them with example cards of “students” who had completed their assignments already, and I wanted them to be the teacher. They needed to check the work and make sure it was completed correctly. If it wasn’t, then they needed to tell what they missed and correct it.
To demonstrate their understanding of the entire unit, we completed an adorable lap book (my first time ever putting together one or even creating one – I was surprised how well it turned out, actually). It was a great way to put everything we discussed in there.
Once we were all done, students were officially Problem Solving S.T.A.R.S. I just reminded students frequently of this acronym.
Stop – Don’t rush with any solution; just take your time and look everything over.
Think – Take your time to think about the problem and solution.
Act – Act on a strategy and try it out.
Review – Look it over and see if you got all the parts.
Wow, you are a true trooper sticking it out in this lengthy post! To sum up the majority of what I have written here, I have some problem-solving bookmarks FREE to help you remember and to help your students!
You can grab these problem-solving bookmarks for FREE by clicking here .
You can do any of these ideas without having to purchase anything. However, if you are looking to save some time and energy, then they are all found in my Math Workshop Problem Solving Unit . The unit is for grade three, but it may work for other grade levels. The practice problems are all for the early third-grade level.
- freebie , Math Workshop , Problem Solving
FIND IT NOW!
Check me out on tpt.
CHECK THESE OUT
5th Grade Math Workshop Growing Bundle- 9 Units
Three Types of Rocks and Minerals with Rock Cycle Circle Book
Want to save time?
COPYRIGHT © 2016-2024. The Owl Teacher | Privacy page | Disclosure Page | Shipping | Returns/Refunds
BOGO on EVERYTHING!
Problem Solving in Mathematics Education
- Open Access
- First Online: 28 June 2016
Cite this chapter
You have full access to this open access chapter
- Peter Liljedahl 6 ,
- Manuel Santos-Trigo 7 ,
- Uldarico Malaspina 8 &
- Regina Bruder 9
Part of the book series: ICME-13 Topical Surveys ((ICME13TS))
94k Accesses
15 Citations
Problem solving in mathematics education has been a prominent research field that aims at understanding and relating the processes involved in solving problems to students’ development of mathematical knowledge and problem solving competencies. The accumulated knowledge and field developments include conceptual frameworks to characterize learners’ success in problem solving activities, cognitive, metacognitive, social and affective analysis, curriculum proposals, and ways to foster problem solving approaches. In the survey, four interrelated areas are reviewed: (i) the relevance of heuristics in problem solving approaches—why are they important and what research tells us about their use? (ii) the need to characterize and foster creative problem solving approaches—what type of heuristics helps learners think of and practice creative solutions? (iii) the importance for learners to formulate and pursue their own problems; and (iv) the role played by the use of both multiple purpose and ad hoc mathematical action types of technologies in problem solving activities—what ways of reasoning do learners construct when they rely on the use of digital technologies and how technology and technology approaches can be reconciled?
You have full access to this open access chapter, Download chapter PDF
- Mathematical Problem
- Prospective Teacher
- Creative Process
- Digital Technology
- Mathematical Task
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Mathematical problem solving has long been seen as an important aspect of mathematics, the teaching of mathematics, and the learning of mathematics. It has infused mathematics curricula around the world with calls for the teaching of problem solving as well as the teaching of mathematics through problem solving. And as such, it has been of interest to mathematics education researchers for as long as our field has existed. More relevant, mathematical problem solving has played a part in every ICME conference, from 1969 until the forthcoming meeting in Hamburg, wherein mathematical problem solving will reside most centrally within the work of Topic Study 19: Problem Solving in Mathematics Education. This booklet is being published on the occasion of this Topic Study Group.
To this end, we have assembled four summaries looking at four distinct, yet inter-related, dimensions of mathematical problem solving. The first summary, by Regina Bruder, is a nuanced look at heuristics for problem solving. This notion of heuristics is carried into Peter Liljedahl’s summary, which looks specifically at a progression of heuristics leading towards more and more creative aspects of problem solving. This is followed by Luz Manuel Santos Trigo’s summary introducing us to problem solving in and with digital technologies. The last summary, by Uldarico Malaspina Jurado, documents the rise of problem posing within the field of mathematics education in general and the problem solving literature in particular.
Each of these summaries references in some critical and central fashion the works of George Pólya or Alan Schoenfeld. To the initiated researchers, this is no surprise. The seminal work of these researchers lie at the roots of mathematical problem solving. What is interesting, though, is the diverse ways in which each of the four aforementioned contributions draw on, and position, these works so as to fit into the larger scheme of their respective summaries. This speaks to not only the depth and breadth of these influential works, but also the diversity with which they can be interpreted and utilized in extending our thinking about problem solving.
Taken together, what follows is a topical survey of ideas representing the diversity of views and tensions inherent in a field of research that is both a means to an end and an end onto itself and is unanimously seen as central to the activities of mathematics.
1 Survey on the State-of-the-Art
1.1 role of heuristics for problem solving—regina bruder.
The origin of the word heuristic dates back to the time of Archimedes and is said to have come out of one of the famous stories told about this great mathematician and inventor. The King of Syracuse asked Archimedes to check whether his new wreath was really made of pure gold. Archimedes struggled with this task and it was not until he was at the bathhouse that he came up with the solution. As he entered the tub he noticed that he had displaced a certain amount of water. Brilliant as he was, he transferred this insight to the issue with the wreath and knew he had solved the problem. According to the legend, he jumped out of the tub and ran from the bathhouse naked screaming, “Eureka, eureka!”. Eureka and heuristic have the same root in the ancient Greek language and so it has been claimed that this is how the academic discipline of “heuristics” dealing with effective approaches to problem solving (so-called heurisms) was given its name. Pólya ( 1964 ) describes this discipline as follows:
Heuristics deals with solving tasks. Its specific goals include highlighting in general terms the reasons for selecting those moments in a problem the examination of which could help us find a solution. (p. 5)
This discipline has grown, in part, from examining the approaches to certain problems more in detail and comparing them with each other in order to abstract similarities in approach, or so-called heurisms. Pólya ( 1949 ), but also, inter alia, Engel ( 1998 ), König ( 1984 ) and Sewerin ( 1979 ) have formulated such heurisms for mathematical problem tasks. The problem tasks examined by the authors mentioned are predominantly found in the area of talent programmes, that is, they often go back to mathematics competitions.
In 1983 Zimmermann provided an overview of heuristic approaches and tools in American literature which also offered suggestions for mathematics classes. In the German-speaking countries, an approach has established itself, going back to Sewerin ( 1979 ) and König ( 1984 ), which divides school-relevant heuristic procedures into heuristic tools, strategies and principles, see also Bruder and Collet ( 2011 ).
Below is a review of the conceptual background of heuristics, followed by a description of the effect mechanisms of heurisms in problem-solving processes.
1.1.1 Research Review on the Promotion of Problem Solving
In the 20th century, there has been an advancement of research on mathematical problem solving and findings about possibilities to promote problem solving with varying priorities (c.f. Pehkonen 1991 ). Based on a model by Pólya ( 1949 ), in a first phase of research on problem solving, particularly in the 1960s and the 1970s, a series of studies on problem-solving processes placing emphasis on the importance of heuristic strategies (heurisms) in problem solving has been carried out. It was assumed that teaching and learning heuristic strategies, principles and tools would provide students with an orientation in problem situations and that this could thus improve students’ problem-solving abilities (c.f. for instance, Schoenfeld 1979 ). This approach, mostly researched within the scope of talent programmes for problem solving, was rather successful (c.f. for instance, Sewerin 1979 ). In the 1980s, requests for promotional opportunities in everyday teaching were given more and more consideration: “ problem solving must be the focus of school mathematics in the 1980s ” (NCTM 1980 ). For the teaching and learning of problem solving in regular mathematics classes, the current view according to which cognitive, heuristic aspects were paramount, was expanded by certain student-specific aspects, such as attitudes, emotions and self-regulated behaviour (c.f. Kretschmer 1983 ; Schoenfeld 1985 , 1987 , 1992 ). Kilpatrick ( 1985 ) divided the promotional approaches described in the literature into five methods which can also be combined with each other.
Osmosis : action-oriented and implicit imparting of problem-solving techniques in a beneficial learning environment
Memorisation : formation of special techniques for particular types of problem and of the relevant questioning when problem solving
Imitation : acquisition of problem-solving abilities through imitation of an expert
Cooperation : cooperative learning of problem-solving abilities in small groups
Reflection : problem-solving abilities are acquired in an action-oriented manner and through reflection on approaches to problem solving.
Kilpatrick ( 1985 ) views as success when heuristic approaches are explained to students, clarified by means of examples and trained through the presentation of problems. The need of making students aware of heuristic approaches is by now largely accepted in didactic discussions. Differences in varying approaches to promoting problem-solving abilities rather refer to deciding which problem-solving strategies or heuristics are to imparted to students and in which way, and not whether these should be imparted at all or not.
1.1.2 Heurisms as an Expression of Mental Agility
The activity theory, particularly in its advancement by Lompscher ( 1975 , 1985 ), offers a well-suited and manageable model to describe learning activities and differences between learners with regard to processes and outcomes in problem solving (c.f. Perels et al. 2005 ). Mental activity starts with a goal and the motive of a person to perform such activity. Lompscher divides actual mental activity into content and process. Whilst the content in mathematical problem-solving consists of certain concepts, connections and procedures, the process describes the psychological processes that occur when solving a problem. This course of action is described in Lompscher by various qualities, such as systematic planning, independence, accuracy, activity and agility. Along with differences in motivation and the availability of expertise, it appears that intuitive problem solvers possess a particularly high mental agility, at least with regard to certain contents areas.
According to Lompscher, “flexibility of thought” expresses itself
… by the capacity to change more or less easily from one aspect of viewing to another one or to embed one circumstance or component into different correlations, to understand the relativity of circumstances and statements. It allows to reverse relations, to more or less easily or quickly attune to new conditions of mental activity or to simultaneously mind several objects or aspects of a given activity (Lompscher 1975 , p. 36).
These typical manifestations of mental agility can be focused on in problem solving by mathematical means and can be related to the heurisms known from the analyses of approaches by Pólya et al. (c.f. also Bruder 2000 ):
Reduction : Successful problem solvers will intuitively reduce a problem to its essentials in a sensible manner. To achieve such abstraction, they often use visualisation and structuring aids, such as informative figures, tables, solution graphs or even terms. These heuristic tools are also very well suited to document in retrospect the approach adopted by the intuitive problem solvers in a way that is comprehensible for all.
Reversibility : Successful problem solvers are able to reverse trains of thought or reproduce these in reverse. They will do this in appropriate situations automatically, for instance, when looking for a key they have mislaid. A corresponding general heuristic strategy is working in reverse.
Minding of aspects : Successful problem solvers will mind several aspects of a given problem at the same time or easily recognise any dependence on things and vary them in a targeted manner. Sometimes, this is also a matter of removing barriers in favour of an idea that appears to be sustainable, that is, by simply “hanging on” to a certain train of thought even against resistance. Corresponding heurisms are, for instance, the principle of invariance, the principle of symmetry (Engel 1998 ), the breaking down or complementing of geometric figures to calculate surface areas, or certain terms used in binomial formulas.
Change of aspects : Successful problem solvers will possibly change their assumptions, criteria or aspects minded in order to find a solution. Various aspects of a given problem will be considered intuitively or the problem be viewed from a different perspective, which will prevent “getting stuck” and allow for new insights and approaches. For instance, many elementary geometric propositions can also be proved in an elegant vectorial manner.
Transferring : Successful problem solvers will be able more easily than others to transfer a well-known procedure to another, sometimes even very different context. They recognise more easily the “framework” or pattern of a given task. Here, this is about own constructions of analogies and continual tracing back from the unknown to the known.
Intuitive, that is, untrained good problem solvers, are, however, often unable to access these flexibility qualities consciously. This is why they are also often unable to explain how they actually solved a given problem.
To be able to solve problems successfully, a certain mental agility is thus required. If this is less well pronounced in a certain area, learning how to solve problems means compensating by acquiring heurisms. In this case, insufficient mental agility is partly “offset” through the application of knowledge acquired by means of heurisms. Mathematical problem-solving competences are thus acquired through the promotion of manifestations of mental agility (reduction, reversibility, minding of aspects and change of aspects). This can be achieved by designing sub-actions of problem solving in connection with a (temporarily) conscious application of suitable heurisms. Empirical evidence for the success of the active principle of heurisms has been provided by Collet ( 2009 ).
Against such background, learning how to solve problems can be established as a long-term teaching and learning process which basically encompasses four phases (Bruder and Collet 2011 ):
Intuitive familiarisation with heuristic methods and techniques.
Making aware of special heurisms by means of prominent examples (explicit strategy acquisition).
Short conscious practice phase to use the newly acquired heurisms with differentiated task difficulties.
Expanding the context of the strategies applied.
In the first phase, students are familiarised with heurisms intuitively by means of targeted aid impulses and questions (what helped us solve this problem?) which in the following phase are substantiated on the basis of model tasks, are given names and are thus made aware of their existence. The third phase serves the purpose of a certain familiarisation with the new heurisms and the experience of competence through individualised practising at different requirement levels, including in the form of homework over longer periods. A fourth and delayed fourth phase aims at more flexibility through the transfer to other contents and contexts and the increasingly intuitive use of the newly acquired heurisms, so that students can enrich their own problem-solving models in a gradual manner. The second and third phases build upon each other in close chronological order, whilst the first phase should be used in class at all times.
All heurisms can basically be described in an action-oriented manner by means of asking the right questions. The way of asking questions can thus also establish a certain kind of personal relation. Even if the teacher presents and suggests the line of basic questions with a prototypical wording each time, students should always be given the opportunity to find “their” wording for the respective heurism and take a note of it for themselves. A possible key question for the use of a heuristic tool would be: How to illustrate and structure the problem or how to present it in a different way?
Unfortunately, for many students, applying heuristic approaches to problem solving will not ensue automatically but will require appropriate early and long-term promoting. The results of current studies, where promotion approaches to problem solving are connected with self-regulation and metacognitive aspects, demonstrate certain positive effects of such combination on students. This field of research includes, for instance, studies by Lester et al. ( 1989 ), Verschaffel et al. ( 1999 ), the studies on teaching method IMPROVE by Mevarech and Kramarski ( 1997 , 2003 ) and also the evaluation of a teaching concept on learning how to solve problems by the gradual conscious acquisition of heurisms by Collet and Bruder ( 2008 ).
1.2 Creative Problem Solving—Peter Liljedahl
There is a tension between the aforementioned story of Archimedes and the heuristics presented in the previous section. Archimedes, when submersing himself in the tub and suddenly seeing the solution to his problem, wasn’t relying on osmosis, memorisation, imitation, cooperation, or reflection (Kilpatrick 1985 ). He wasn’t drawing on reduction, reversibility, minding of aspects, change of aspect, or transfer (Bruder 2000 ). Archimedes was stuck and it was only, in fact, through insight and sudden illumination that he managed to solve his problem. In short, Archimedes was faced with a problem that the aforementioned heuristics, and their kind, would not help him to solve.
According to some, such a scenario is the definition of a problem. For example, Resnick and Glaser ( 1976 ) define a problem as being something that you do not have the experience to solve. Mathematicians, in general, agree with this (Liljedahl 2008 ).
Any problem in which you can see how to attack it by deliberate effort, is a routine problem, and cannot be an important discover. You must try and fail by deliberate efforts, and then rely on a sudden inspiration or intuition or if you prefer to call it luck. (Dan Kleitman, participant cited in Liljedahl 2008 , p. 19).
Problems, then, are tasks that cannot be solved by direct effort and will require some creative insight to solve (Liljedahl 2008 ; Mason et al. 1982 ; Pólya 1965 ).
1.2.1 A History of Creativity in Mathematics Education
In 1902, the first half of what eventually came to be a 30 question survey was published in the pages of L’Enseignement Mathématique , the journal of the French Mathematical Society. The authors, Édouard Claparède and Théodore Flournoy, were two Swiss psychologists who were deeply interested in the topics of mathematical discovery, creativity and invention. Their hope was that a widespread appeal to mathematicians at large would incite enough responses for them to begin to formulate some theories about this topic. The first half of the survey centered on the reasons for becoming a mathematician (family history, educational influences, social environment, etc.), attitudes about everyday life, and hobbies. This was eventually followed, in 1904, by the publication of the second half of the survey pertaining, in particular, to mental images during periods of creative work. The responses were sorted according to nationality and published in 1908.
During this same period Henri Poincaré (1854–1912), one of the most noteworthy mathematicians of the time, had already laid much of the groundwork for his own pursuit of this same topic and in 1908 gave a presentation to the French Psychological Society in Paris entitled L’Invention mathématique —often mistranslated to Mathematical Creativity Footnote 1 (c.f. Poincaré 1952 ). At the time of the presentation Poincaré stated that he was aware of Claparède and Flournoy’s work, as well as their results, but expressed that they would only confirm his own findings. Poincaré’s presentation, as well as the essay it spawned, stands to this day as one of the most insightful, and thorough treatments of the topic of mathematical discovery, creativity, and invention.
Just at this time, I left Caen, where I was living, to go on a geological excursion under the auspices of the School of Mines. The incident of the travel made me forget my mathematical work. Having reached Coutances, we entered an omnibus to go some place or other. At the moment when I put my foot on the step, the idea came to me, without anything in my former thoughts seeming to have paved the way for it, that the transformations I had used to define the Fuschian functions were identical with those of non-Euclidean geometry. I did not verify the idea; I should not have had the time, as, upon taking my seat in the omnibus, I went on with the conversation already commenced, but I felt a perfect certainty. On my return to Caen, for conscience’ sake, I verified the results at my leisure. (Poincaré 1952 , p. 53)
So powerful was his presentation, and so deep were his insights into his acts of invention and discovery that it could be said that he not so much described the characteristics of mathematical creativity, as defined them. From that point forth mathematical creativity, or even creativity in general, has not been discussed seriously without mention of Poincaré’s name.
Inspired by this presentation, Jacques Hadamard (1865–1963), a contemporary and a friend of Poincaré’s, began his own empirical investigation into this fascinating phenomenon. Hadamard had been critical of Claparède and Flournoy’s work in that they had not adequately treated the topic on two fronts. As exhaustive as the survey appeared to be, Hadamard felt that it failed to ask some key questions—the most important of which was with regard to the reason for failures in the creation of mathematics. This seemingly innocuous oversight, however, led directly to his second and “most important criticism” (Hadamard 1945 ). He felt that only “first-rate men would dare to speak of” (p. 10) such failures. So, inspired by his good friend Poincaré’s treatment of the subject Hadamard retooled the survey and gave it to friends of his for consideration—mathematicians such as Henri Poincaré and Albert Einstein, whose prominence were beyond reproach. Ironically, the new survey did not contain any questions that explicitly dealt with failure. In 1943 Hadamard gave a series of lectures on mathematical invention at the École Libre des Hautes Études in New York City. These talks were subsequently published as The Psychology of Mathematical Invention in the Mathematical Field (Hadameard 1945 ).
Hadamard’s classic work treats the subject of invention at the crossroads of mathematics and psychology. It provides not only an entertaining look at the eccentric nature of mathematicians and their rituals, but also outlines the beliefs of mid twentieth-century mathematicians about the means by which they arrive at new mathematics. It is an extensive exploration and extended argument for the existence of unconscious mental processes. In essence, Hadamard took the ideas that Poincaré had posed and, borrowing a conceptual framework for the characterization of the creative process from the Gestaltists of the time (Wallas 1926 ), turned them into a stage theory. This theory still stands as the most viable and reasonable description of the process of mathematical creativity.
1.2.2 Defining Mathematical Creativity
The phenomena of mathematical creativity, although marked by sudden illumination, actually consist of four separate stages stretched out over time, of which illumination is but one stage. These stages are initiation, incubation, illumination, and verification (Hadamard 1945 ). The first of these stages, the initiation phase, consists of deliberate and conscious work. This would constitute a person’s voluntary, and seemingly fruitless, engagement with a problem and be characterized by an attempt to solve the problem by trolling through a repertoire of past experiences. This is an important part of the inventive process because it creates the tension of unresolved effort that sets up the conditions necessary for the ensuing emotional release at the moment of illumination (Hadamard 1945 ; Poincaré 1952 ).
Following the initiation stage the solver, unable to come up with a solution stops working on the problem at a conscious level and begins to work on it at an unconscious level (Hadamard 1945 ; Poincaré 1952 ). This is referred to as the incubation stage of the inventive process and can last anywhere from several minutes to several years. After the period of incubation a rapid coming to mind of a solution, referred to as illumination , may occur. This is accompanied by a feeling of certainty and positive emotions (Poincaré 1952 ). Although the processes of incubation and illumination are shrouded behind the veil of the unconscious there are a number of things that can be deduced about them. First and foremost is the fact that unconscious work does, indeed, occur. Poincaré ( 1952 ), as well as Hadamard ( 1945 ), use the very real experience of illumination, a phenomenon that cannot be denied, as evidence of unconscious work, the fruits of which appear in the flash of illumination. No other theory seems viable in explaining the sudden appearance of solution during a walk, a shower, a conversation, upon waking, or at the instance of turning the conscious mind back to the problem after a period of rest (Poincaré 1952 ). Also deducible is that unconscious work is inextricably linked to the conscious and intentional effort that precedes it.
There is another remark to be made about the conditions of this unconscious work: it is possible, and of a certainty it is only fruitful, if it is on the one hand preceded and on the other hand followed by a period of conscious work. These sudden inspirations never happen except after some days of voluntary effort which has appeared absolutely fruitless and whence nothing good seems to have come … (Poincaré 1952 , p. 56)
Hence, the fruitless efforts of the initiation phase are only seemingly so. They not only set up the aforementioned tension responsible for the emotional release at the time of illumination, but also create the conditions necessary for the process to enter into the incubation phase.
Illumination is the manifestation of a bridging that occurs between the unconscious mind and the conscious mind (Poincaré 1952 ), a coming to (conscious) mind of an idea or solution. What brings the idea forward to consciousness is unclear, however. There are theories of the aesthetic qualities of the idea, effective surprise/shock of recognition, fluency of processing, or breaking functional fixedness. For reasons of brevity I will only expand on the first of these.
Poincaré proposed that ideas that were stimulated during initiation remained stimulated during incubation. However, freed from the constraints of conscious thought and deliberate calculation, these ideas would begin to come together in rapid and random unions so that “their mutual impacts may produce new combinations” (Poincaré 1952 ). These new combinations, or ideas, would then be evaluated for viability using an aesthetic sieve, which allows through to the conscious mind only the “right combinations” (Poincaré 1952 ). It is important to note, however, that good or aesthetic does not necessarily mean correct. Correctness is evaluated during the verification stage.
The purpose of verification is not only to check for correctness. It is also a method by which the solver re-engages with the problem at the level of details. That is, during the unconscious work the problem is engaged with at the level of ideas and concepts. During verification the solver can examine these ideas in closer details. Poincaré succinctly describes both of these purposes.
As for the calculations, themselves, they must be made in the second period of conscious work, that which follows the inspiration, that in which one verifies the results of this inspiration and deduces their consequences. (Poincaré 1952 , p. 62)
Aside from presenting this aforementioned theory on invention, Hadamard also engaged in a far-reaching discussion on a number of interesting, and sometimes quirky, aspects of invention and discovery that he had culled from the results of his empirical study, as well as from pertinent literature. This discussion was nicely summarized by Newman ( 2000 ) in his commentary on the elusiveness of invention.
The celebrated phrenologist Gall said mathematical ability showed itself in a bump on the head, the location of which he specified. The psychologist Souriau, we are told, maintained that invention occurs by “pure chance”, a valuable theory. It is often suggested that creative ideas are conjured up in “mathematical dreams”, but this attractive hypothesis has not been verified. Hadamard reports that mathematicians were asked whether “noises” or “meteorological circumstances” helped or hindered research [..] Claude Bernard, the great physiologist, said that in order to invent “one must think aside”. Hadamard says this is a profound insight; he also considers whether scientific invention may perhaps be improved by standing or sitting or by taking two baths in a row. Helmholtz and Poincaré worked sitting at a table; Hadamard’s practice is to pace the room (“Legs are the wheels of thought”, said Emile Angier); the chemist J. Teeple was the two-bath man. (p. 2039)
1.2.3 Discourses on Creativity
Creativity is a term that can be used both loosely and precisely. That is, while there exists a common usage of the term there also exists a tradition of academic discourse on the subject. A common usage of creative refers to a process or a person whose products are original, novel, unusual, or even abnormal (Csíkszentmihályi 1996 ). In such a usage, creativity is assessed on the basis of the external and observable products of the process, the process by which the product comes to be, or on the character traits of the person doing the ‘creating’. Each of these usages—product, process, person—is the roots of the discourses (Liljedahl and Allan 2014 ) that I summarize here, the first of which concerns products.
Consider a mother who states that her daughter is creative because she drew an original picture. The basis of such a statement can lie either in the fact that the picture is unlike any the mother has ever seen or unlike any her daughter has ever drawn before. This mother is assessing creativity on the basis of what her daughter has produced. However, the standards that form the basis of her assessment are neither consistent nor stringent. There does not exist a universal agreement as to what she is comparing the picture to (pictures by other children or other pictures by the same child). Likewise, there is no standard by which the actual quality of the picture is measured. The academic discourse that concerns assessment of products, on the other hand, is both consistent and stringent (Csíkszentmihályi 1996 ). This discourse concerns itself more with a fifth, and as yet unmentioned, stage of the creative process; elaboration . Elaboration is where inspiration becomes perspiration (Csíkszentmihályi 1996 ). It is the act of turning a good idea into a finished product, and the finished product is ultimately what determines the creativity of the process that spawned it—that is, it cannot be a creative process if nothing is created. In particular, this discourse demands that the product be assessed against other products within its field, by the members of that field, to determine if it is original AND useful (Csíkszentmihályi 1996 ; Bailin 1994 ). If it is, then the product is deemed to be creative. Note that such a use of assessment of end product pays very little attention to the actual process that brings this product forth.
The second discourse concerns the creative process. The literature pertaining to this can be separated into two categories—a prescriptive discussion of the creativity process and a descriptive discussion of the creativity process. Although both of these discussions have their roots in the four stages that Wallas ( 1926 ) proposed makes up the creative process, they make use of these stages in very different ways. The prescriptive discussion of the creative process is primarily focused on the first of the four stages, initiation , and is best summarized as a cause - and - effect discussion of creativity, where the thinking processes during the initiation stage are the cause and the creative outcome are the effects (Ghiselin 1952 ). Some of the literature claims that the seeds of creativity lie in being able to think about a problem or situation analogically. Other literature claims that utilizing specific thinking tools such as imagination, empathy, and embodiment will lead to creative products. In all of these cases, the underlying theory is that the eventual presentation of a creative idea will be precipitated by the conscious and deliberate efforts during the initiation stage. On the other hand, the literature pertaining to a descriptive discussion of the creative process is inclusive of all four stages (Kneller 1965 ; Koestler 1964 ). For example, Csíkszentmihályi ( 1996 ), in his work on flow attends to each of the stages, with much attention paid to the fluid area between conscious and unconscious work, or initiation and incubation. His claim is that the creative process is intimately connected to the enjoyment that exists during times of sincere and consuming engagement with a situation, the conditions of which he describes in great detail.
The third, and final, discourse on creativity pertains to the person. This discourse is space dominated by two distinct characteristics, habit and genius. Habit has to do with the personal habits as well as the habits of mind of people that have been deemed to be creative. However, creative people are most easily identified through their reputation for genius. Consequently, this discourse is often dominated by the analyses of the habits of geniuses as is seen in the work of Ghiselin ( 1952 ), Koestler ( 1964 ), and Kneller ( 1965 ) who draw on historical personalities such as Albert Einstein, Henri Poincaré, Vincent Van Gogh, D.H. Lawrence, Samuel Taylor Coleridge, Igor Stravinsky, and Wolfgang Amadeus Mozart to name a few. The result of this sort of treatment is that creative acts are viewed as rare mental feats, which are produced by extraordinary individuals who use extraordinary thought processes.
These different discourses on creativity can be summed up in a tension between absolutist and relativist perspectives on creativity (Liljedahl and Sriraman 2006 ). An absolutist perspective assumes that creative processes are the domain of genius and are present only as precursors to the creation of remarkably useful and universally novel products. The relativist perspective, on the other hand, allows for every individual to have moments of creativity that may, or may not, result in the creation of a product that may, or may not, be either useful or novel.
Between the work of a student who tries to solve a problem in geometry or algebra and a work of invention, one can say there is only a difference of degree. (Hadamard 1945 , p. 104).
Regardless of discourse, however, creativity is not “part of the theories of logical forms” (Dewey 1938 ). That is, creativity is not representative of the lock-step logic and deductive reasoning that mathematical problem solving is often presumed to embody (Bibby 2002 ; Burton 1999 ). Couple this with the aforementioned demanding constraints as to what constitutes a problem, where then does that leave problem solving heuristics? More specifically, are there creative problem solving heuristics that will allow us to resolve problems that require illumination to solve? The short answer to this question is yes—there does exist such problem solving heuristics. To understand these, however, we must first understand the routine problem solving heuristics they are built upon. In what follows, I walk through the work of key authors and researchers whose work offers us insights into progressively more creative problem solving heuristics for solving true problems.
1.2.4 Problem Solving by Design
In a general sense, design is defined as the algorithmic and deductive approach to solving a problem (Rusbult 2000 ). This process begins with a clearly defined goal or objective after which there is a great reliance on relevant past experience, referred to as repertoire (Bruner 1964 ; Schön 1987 ), to produce possible options that will lead towards a solution of the problem (Poincaré 1952 ). These options are then examined through a process of conscious evaluations (Dewey 1933 ) to determine their suitability for advancing the problem towards the final goal. In very simple terms, problem solving by design is the process of deducing the solution from that which is already known.
Mayer ( 1982 ), Schoenfeld ( 1982 ), and Silver ( 1982 ) state that prior knowledge is a key element in the problem solving process. Prior knowledge influences the problem solver’s understanding of the problem as well as the choice of strategies that will be called upon in trying to solve the problem. In fact, prior knowledge and prior experiences is all that a solver has to draw on when first attacking a problem. As a result, all problem solving heuristics incorporate this resource of past experiences and prior knowledge into their initial attack on a problem. Some heuristics refine these ideas, and some heuristics extend them (c.f. Kilpatrick 1985 ; Bruder 2000 ). Of the heuristics that refine, none is more influential than the one created by George Pólya (1887–1985).
1.2.5 George Pólya: How to Solve It
In his book How to Solve It (1949) Pólya lays out a problem solving heuristic that relies heavily on a repertoire of past experience. He summarizes the four-step process of his heuristic as follows:
Understanding the Problem
First. You have to understand the problem.
What is the unknown? What are the data? What is the condition?
Is it possible to satisfy the condition? Is the condition sufficient to determine the unknown? Or is it insufficient? Or redundant? Or contradictory?
Draw a figure. Introduce suitable notation.
Separate the various parts of the condition. Can you write them down?
Devising a Plan
Second. Find the connection between the data and the unknown. You may be obliged to consider auxiliary problems if an immediate connection cannot be found. You should obtain eventually a plan of the solution.
Have you seen it before? Or have you seen the same problem in a slightly different form?
Do you know a related problem? Do you know a theorem that could be useful?
Look at the unknown! And try to think of a familiar problem having the same or a similar unknown.
Here is a problem related to yours and solved before. Could you use it? Could you use its result? Could you use its method? Should you introduce some auxiliary element in order to make its use possible?
Could you restate the problem? Could you restate it still differently? Go back to definitions.
If you cannot solve the proposed problem try to solve first some related problem. Could you imagine a more accessible related problem? A more general problem? A more special problem? An analogous problem? Could you solve a part of the problem? Keep only a part of the condition, drop the other part; how far is the unknown then determined, how can it vary? Could you derive something useful from the data? Could you think of other data appropriate to determine the unknown? Could you change the unknown or data, or both if necessary, so that the new unknown and the new data are nearer to each other?
Did you use all the data? Did you use the whole condition? Have you taken into account all essential notions involved in the problem?
Carrying Out the Plan
Third. Carry out your plan.
Carrying out your plan of the solution, check each step. Can you see clearly that the step is correct? Can you prove that it is correct?
Looking Back
Fourth. Examine the solution obtained.
Can you check the result? Can you check the argument?
Can you derive the solution differently? Can you see it at a glance?
Can you use the result, or the method, for some other problem?
The emphasis on auxiliary problems, related problems, and analogous problems that are, in themselves, also familiar problems is an explicit manifestation of relying on a repertoire of past experience. This use of familiar problems also requires an ability to deduce from these related problems a recognizable and relevant attribute that will transfer to the problem at hand. The mechanism that allows for this transfer of knowledge between analogous problems is known as analogical reasoning (English 1997 , 1998 ; Novick 1988 , 1990 , 1995 ; Novick and Holyoak 1991 ) and has been shown to be an effective, but not always accessible, thinking strategy.
Step four in Pólya’s heuristic, looking back, is also a manifestation of utilizing prior knowledge to solve problems, albeit an implicit one. Looking back makes connections “in memory to previously acquired knowledge [..] and further establishes knowledge in long-term memory that may be elaborated in later problem-solving encounters” (Silver 1982 , p. 20). That is, looking back is a forward-looking investment into future problem solving encounters, it sets up connections that may later be needed.
Pólya’s heuristic is a refinement on the principles of problem solving by design. It not only makes explicit the focus on past experiences and prior knowledge, but also presents these ideas in a very succinct, digestible, and teachable manner. This heuristic has become a popular, if not the most popular, mechanism by which problem solving is taught and learned.
1.2.6 Alan Schoenfeld: Mathematical Problem Solving
The work of Alan Schoenfeld is also a refinement on the principles of problem solving by design. However, unlike Pólya ( 1949 ) who refined these principles at a theoretical level, Schoenfeld has refined them at a practical and empirical level. In addition to studying taught problem solving strategies he has also managed to identify and classify a variety of strategies, mostly ineffectual, that students invoke naturally (Schoenfeld 1985 , 1992 ). In so doing, he has created a better understanding of how students solve problems, as well as a better understanding of how problems should be solved and how problem solving should be taught.
For Schoenfeld, the problem solving process is ultimately a dialogue between the problem solver’s prior knowledge, his attempts, and his thoughts along the way (Schoenfeld 1982 ). As such, the solution path of a problem is an emerging and contextually dependent process. This is a departure from the predefined and contextually independent processes of Pólya’s ( 1949 ) heuristics. This can be seen in Schoenfeld’s ( 1982 ) description of a good problem solver.
To examine what accounts for expertise in problem solving, you would have to give the expert a problem for which he does not have access to a solution schema. His behavior in such circumstances is radically different from what you would see when he works on routine or familiar “non-routine” problems. On the surface his performance is no longer proficient; it may even seem clumsy. Without access to a solution schema, he has no clear indication of how to start. He may not fully understand the problem, and may simply “explore it for a while until he feels comfortable with it. He will probably try to “match” it to familiar problems, in the hope it can be transformed into a (nearly) schema-driven solution. He will bring up a variety of plausible things: related facts, related problems, tentative approaches, etc. All of these will have to be juggled and balanced. He may make an attempt solving it in a particular way, and then back off. He may try two or three things for a couple of minutes and then decide which to pursue. In the midst of pursuing one direction he may go back and say “that’s harder than it should be” and try something else. Or, after the comment, he may continue in the same direction. With luck, after some aborted attempts, he will solve the problem. (p. 32-33)
Aside from demonstrating the emergent nature of the problem solving process, this passage also brings forth two consequences of Schoenfeld’s work. The first of these is the existence of problems for which the solver does not have “access to a solution schema”. Unlike Pólya ( 1949 ), who’s heuristic is a ‘one size fits all (problems)’ heuristic, Schoenfeld acknowledges that problem solving heuristics are, in fact, personal entities that are dependent on the solver’s prior knowledge as well as their understanding of the problem at hand. Hence, the problems that a person can solve through his or her personal heuristic are finite and limited.
The second consequence that emerges from the above passage is that if a person lacks the solution schema to solve a given problem s/he may still solve the problem with the help of luck . This is an acknowledgement, if only indirectly so, of the difference between problem solving in an intentional and mechanical fashion verses problem solving in a more creative fashion, which is neither intentional nor mechanical (Pehkonen 1997 ).
1.2.7 David Perkins: Breakthrough Thinking
As mentioned, many consider a problem that can be solved by intentional and mechanical means to not be worthy of the title ‘problem’. As such, a repertoire of past experiences sufficient for dealing with such a ‘problem’ would disqualify it from the ranks of ‘problems’ and relegate it to that of ‘exercises’. For a problem to be classified as a ‘problem’, then, it must be ‘problematic’. Although such an argument is circular it is also effective in expressing the ontology of mathematical ‘problems’.
Perkins ( 2000 ) also requires problems to be problematic. His book Archimedes’ Bathtub: The Art and Logic of Breakthrough Thinking (2000) deals with situations in which the solver has gotten stuck and no amount of intentional or mechanical adherence to the principles of past experience and prior knowledge is going to get them unstuck. That is, he deals with problems that, by definition, cannot be solved through a process of design [or through the heuristics proposed by Pólya ( 1949 ) and Schoenfeld ( 1985 )]. Instead, the solver must rely on the extra-logical process of what Perkins ( 2000 ) calls breakthrough thinking .
Perkins ( 2000 ) begins by distinguishing between reasonable and unreasonable problems. Although both are solvable, only reasonable problems are solvable through reasoning. Unreasonable problems require a breakthrough in order to solve them. The problem, however, is itself inert. It is neither reasonable nor unreasonable. That quality is brought to the problem by the solver. That is, if a student cannot solve a problem by direct effort then that problem is deemed to be unreasonable for that student. Perkins ( 2000 ) also acknowledges that what is an unreasonable problem for one person is a perfectly reasonable problem for another person; reasonableness is dependent on the person.
This is not to say that, once found, the solution cannot be seen as accessible through reason. During the actual process of solving, however, direct and deductive reasoning does not work. Perkins ( 2000 ) uses several classic examples to demonstrate this, the most famous being the problem of connecting nine dots in a 3 × 3 array with four straight lines without removing pencil from paper, the solution to which is presented in Fig. 1 .
Nine dots—four lines problem and solution
To solve this problem, Perkins ( 2000 ) claims that the solver must recognize that the constraint of staying within the square created by the 3 × 3 array is a self-imposed constraint. He further claims that until this is recognized no amount of reasoning is going to solve the problem. That is, at this point in the problem solving process the problem is unreasonable. However, once this self-imposed constraint is recognized the problem, and the solution, are perfectly reasonable. Thus, the solution of an, initially, unreasonable problem is reasonable.
The problem solving heuristic that Perkins ( 2000 ) has constructed to deal with solvable, but unreasonable, problems revolves around the idea of breakthrough thinking and what he calls breakthrough problems . A breakthrough problem is a solvable problem in which the solver has gotten stuck and will require an AHA! to get unstuck and solve the problem. Perkins ( 2000 ) poses that there are only four types of solvable unreasonable problems, which he has named wilderness of possibilities , the clueless plateau , narrow canyon of exploration , and oasis of false promise . The names for the first three of these types of problems are related to the Klondike gold rush in Alaska, a time and place in which gold was found more by luck than by direct and systematic searching.
The wilderness of possibilities is a term given to a problem that has many tempting directions but few actual solutions. This is akin to a prospector searching for gold in the Klondike. There is a great wilderness in which to search, but very little gold to be found. The clueless plateau is given to problems that present the solver with few, if any, clues as to how to solve it. The narrow canyon of exploration is used to describe a problem that has become constrained in such a way that no solution now exists. The nine-dot problem presented above is such a problem. The imposed constraint that the lines must lie within the square created by the array makes a solution impossible. This is identical to the metaphor of a prospector searching for gold within a canyon where no gold exists. The final type of problem gets its name from the desert. An oasis of false promise is a problem that allows the solver to quickly get a solution that is close to the desired outcome; thereby tempting them to remain fixed on the strategy that they used to get this almost-answer. The problem is, that like the canyon, the solution does not exist at the oasis; the solution strategy that produced an almost-answer is incapable of producing a complete answer. Likewise, a desert oasis is a false promise in that it is only a reprieve from the desolation of the dessert and not a final destination.
Believing that there are only four ways to get stuck, Perkins ( 2000 ) has designed a problem solving heuristic that will “up the chances” of getting unstuck. This heuristic is based on what he refers to as “the logic of lucking out” (p. 44) and is built on the idea of introspection. By first recognizing that they are stuck, and then recognizing that the reason they are stuck can only be attributed to one of four reasons, the solver can access four strategies for getting unstuck, one each for the type of problem they are dealing with. If the reason they are stuck is because they are faced with a wilderness of possibilities they are to begin roaming far, wide, and systematically in the hope of reducing the possible solution space to one that is more manageable. If they find themselves on a clueless plateau they are to begin looking for clues, often in the wording of the problem. When stuck in a narrow canyon of possibilities they need to re-examine the problem and see if they have imposed any constraints. Finally, when in an oasis of false promise they need to re-attack the problem in such a way that they stay away from the oasis.
Of course, there are nuances and details associated with each of these types of problems and the strategies for dealing with them. However, nowhere within these details is there mention of the main difficulty inherent in introspection; that it is much easier for the solver to get stuck than it is for them to recognize that they are stuck. Once recognized, however, the details of Perkins’ ( 2000 ) heuristic offer the solver some ways for recognizing why they are stuck.
1.2.8 John Mason, Leone Burton, and Kaye Stacey: Thinking Mathematically
The work of Mason et al. in their book Thinking Mathematically ( 1982 ) also recognizes the fact that for each individual there exists problems that will not yield to their intentional and mechanical attack. The heuristic that they present for dealing with this has two main processes with a number of smaller phases, rubrics, and states. The main processes are what they refer to as specializing and generalizing. Specializing is the process of getting to know the problem and how it behaves through the examination of special instances of the problem. This process is synonymous with problem solving by design and involves the repeated oscillation between the entry and attack phases of Mason et al. ( 1982 ) heuristic. The entry phase is comprised of ‘getting started’ and ‘getting involved’ with the problem by using what is immediately known about it. Attacking the problem involves conjecturing and testing a number of hypotheses in an attempt to gain greater understanding of the problem and to move towards a solution.
At some point within this process of oscillating between entry and attack the solver will get stuck, which Mason et al. ( 1982 ) refer to as “an honourable and positive state, from which much can be learned” (p. 55). The authors dedicate an entire chapter to this state in which they acknowledge that getting stuck occurs long before an awareness of being stuck develops. They proposes that the first step to dealing with being stuck is the simple act of writing STUCK!
The act of expressing my feelings helps to distance me from my state of being stuck. It frees me from incapacitating emotions and reminds me of actions that I can take. (p. 56)
The next step is to reengage the problem by examining the details of what is known, what is wanted, what can be introduced into the problem, and what has been introduced into the problem (imposed assumptions). This process is engaged in until an AHA!, which advances the problem towards a solution, is encountered. If, at this point, the problem is not completely solved the oscillation is then resumed.
At some point in this process an attack on the problem will yield a solution and generalizing can begin. Generalizing is the process by which the specifics of a solution are examined and questions as to why it worked are investigated. This process is synonymous with the verification and elaboration stages of invention and creativity. Generalization may also include a phase of review that is similar to Pólya’s ( 1949 ) looking back.
1.2.9 Gestalt: The Psychology of Problem Solving
The Gestalt psychology of learning believes that all learning is based on insights (Koestler 1964 ). This psychology emerged as a response to behaviourism, which claimed that all learning was a response to external stimuli. Gestalt psychologists, on the other hand, believed that there was a cognitive process involved in learning as well. With regards to problem solving, the Gestalt school stands firm on the belief that problem solving, like learning, is a product of insight and as such, cannot be taught. In fact, the theory is that not only can problem solving not be taught, but also that attempting to adhere to any sort of heuristic will impede the working out of a correct solution (Krutestkii 1976 ). Thus, there exists no Gestalt problem solving heuristic. Instead, the practice is to focus on the problem and the solution rather than on the process of coming up with a solution. Problems are solved by turning them over and over in the mind until an insight, a viable avenue of attack, presents itself. At the same time, however, there is a great reliance on prior knowledge and past experiences. The Gestalt method of problem solving, then, is at the same time very different and very similar to the process of design.
Gestalt psychology has not fared well during the evolution of cognitive psychology. Although it honours the work of the unconscious mind it does so at the expense of practicality. If learning is, indeed, entirely based on insight then there is little point in continuing to study learning. “When one begins by assuming that the most important cognitive phenomena are inaccessible, there really is not much left to talk about” (Schoenfeld 1985 , p. 273). However, of interest here is the Gestalt psychologists’ claim that focus on problem solving methods creates functional fixedness (Ashcraft 1989 ). Mason et al. ( 1982 ), as well as Perkins ( 2000 ) deal with this in their work on getting unstuck.
1.2.10 Final Comments
Mathematics has often been characterized as the most precise of all sciences. Lost in such a misconception is the fact that mathematics often has its roots in the fires of creativity, being born of the extra-logical processes of illumination and intuition. Problem solving heuristics that are based solely on the processes of logical and deductive reasoning distort the true nature of problem solving. Certainly, there are problems in which logical deductive reasoning is sufficient for finding a solution. But these are not true problems. True problems need the extra-logical processes of creativity, insight, and illumination, in order to produce solutions.
Fortunately, as elusive as such processes are, there does exist problem solving heuristics that incorporate them into their strategies. Heuristics such as those by Perkins ( 2000 ) and Mason et al. ( 1982 ) have found a way of combining the intentional and mechanical processes of problem solving by design with the extra-logical processes of creativity, illumination, and the AHA!. Furthermore, they have managed to do so without having to fully comprehend the inner workings of this mysterious process.
1.3 Digital Technologies and Mathematical Problem Solving—Luz Manuel Santos-Trigo
Mathematical problem solving is a field of research that focuses on analysing the extent to which problem solving activities play a crucial role in learners’ understanding and use of mathematical knowledge. Mathematical problems are central in mathematical practice to develop the discipline and to foster students learning (Pólya 1945 ; Halmos 1994 ). Mason and Johnston-Wilder ( 2006 ) pointed out that “The purpose of a task is to initiate mathematically fruitful activity that leads to a transformation in what learners are sensitized to notice and competent to carry out” (p. 25). Tasks are essential for learners to elicit their ideas and to engage them in mathematical thinking. In a problem solving approach, what matters is the learners’ goals and ways to interact with the tasks. That is, even routine tasks can be a departure point for learners to extend initial conditions and transform them into some challenging activities.
Thus, analysing and characterizing ways in which mathematical problems are formulated (Singer et al. 2015 ) and the process involved in pursuing and solving those problems generate important information to frame and structure learning environments to guide and foster learners’ construction of mathematical concepts and problem solving competences (Santos-Trigo 2014 ). Furthermore, mathematicians or discipline practitioners have often been interested in unveiling and sharing their own experience while developing the discipline. As a results, they have provided valuable information to characterize mathematical practices and their relations to what learning processes of the discipline entails. It is recognized that the work of Pólya ( 1945 ) offered not only bases to launch several research programs in problem solving (Schoenfeld 1992 ; Mason et al. 1982 ); but also it became an essential resource for teachers to orient and structure their mathematical lessons (Krulik and Reys 1980 ).
1.3.1 Research Agenda
A salient feature of a problem solving approach to learn mathematics is that teachers and students develop and apply an enquiry or inquisitive method to delve into mathematical concepts and tasks. How are mathematical problems or concepts formulated? What types of problems are important for teachers/learners to discuss and engage in mathematical reasoning? What mathematical processes and ways of reasoning are involved in understanding mathematical concepts and solving problems? What are the features that distinguish an instructional environment that fosters problem-solving activities? How can learners’ problem solving competencies be assessed? How can learners’ problem solving competencies be characterized and explained? How can learners use digital technologies to understand mathematics and to develop problem-solving competencies? What ways of reasoning do learners construct when they use digital technologies in problem solving approaches? These types of questions have been important in the problem solving research agenda and delving into them has led researchers to generate information and results to support and frame curriculum proposals and learning scenarios. The purpose of this section is to present and discuss important themes that emerged in problem solving approaches that rely on the systematic use of several digital technologies.
In the last 40 years, the accumulated knowledge in the problem solving field has shed lights on both a characterization of what mathematical thinking involves and how learners can construct a robust knowledge in problem solving environments (Schoenfeld 1992 ). In this process, the field has contributed to identify what types of transformations traditional learning scenarios might consider when teachers and students incorporate the use of digital technologies in mathematical classrooms. In this context, it is important to briefly review what main themes and developments the field has addressed and achieved during the last 40 years.
1.3.2 Problem Solving Developments
There are traces of mathematical problems and solutions throughout the history of civilization that explain the humankind interest for identifying and exploring mathematical relations (Kline 1972 ). Pólya ( 1945 ) reflects on his own practice as a mathematician to characterize the process of solving mathematical problems through four main phases: Understanding the problem, devising a plan, carrying out the plan, and looking back. Likewise, Pólya ( 1945 ) presents and discusses the role played by heuristic methods throughout all problem solving phases. Schoenfeld ( 1985 ) presents a problem solving research program based on Pólya’s ( 1945 ) ideas to investigate the extent to which problem solving heuristics help university students to solve mathematical problems and to develop a way of thinking that shows consistently features of mathematical practices. As a result, he explains the learners’ success or failure in problem solving activities can be characterized in terms their mathematical resources and ways to access them, cognitive and metacognitive strategies used to represent and explore mathematical tasks, and systems of beliefs about mathematics and solving problems. In addition, Schoenfeld ( 1992 ) documented that heuristics methods as illustrated in Pólya’s ( 1945 ) book are ample and general and do not include clear information and directions about how learners could assimilate, learn, and use them in their problem solving experiences. He suggested that students need to discuss what it means, for example, to think of and examining special cases (one important heuristic) in finding a closed formula for series or sequences, analysing relationships of roots of polynomials, or focusing on regular polygons or equilateral/right triangles to find general relations about these figures. That is, learners need to work on examples that lead them to recognize that the use of a particular heuristic often involves thinking of different type of cases depending on the domain or content involved. Lester and Kehle ( 2003 ) summarize themes and methodological shifts in problem solving research up to 1995. Themes include what makes a problem difficult for students and what it means to be successful problem solvers; studying and contrasting experts and novices’ problem solving approaches; learners’ metacognitive, beliefs systems and the influence of affective behaviours; and the role of context; and social interactions in problem solving environments. Research methods in problem solving studies have gone from emphasizing quantitative or statistical design to the use of cases studies and ethnographic methods (Krutestkii ( 1976 ). Teaching strategies also evolved from being centred on teachers to the active students’ engagement and collaboration approaches (NCTM 2000 ). Lesh and Zawojewski ( 2007 ) propose to extend problem solving approaches beyond class setting and they introduce the construct “model eliciting activities” to delve into the learners’ ideas and thinking as a way to engage them in the development of problem solving experiences. To this end, learners develop and constantly refine problem-solving competencies as a part of a learning community that promotes and values modelling construction activities. Recently, English and Gainsburg ( 2016 ) have discussed the importance of modeling eliciting activities to prepare and develop students’ problem solving experiences for 21st Century challenges and demands.
Törner et al. ( 2007 ) invited mathematics educators worldwide to elaborate on the influence and developments of problem solving in their countries. Their contributions show a close relationship between countries mathematical education traditions and ways to frame and implement problem solving approaches. In Chinese classrooms, for example, three instructional strategies are used to structure problem solving lessons: one problem multiple solutions , multiple problems one solution , and one problem multiple changes . In the Netherlands, the realistic mathematical approach permeates the students’ development of problem solving competencies; while in France, problem solving activities are structured in terms of two influential frameworks: The theory of didactical situations and anthropological theory of didactics.
In general, problem solving frameworks and instructional approaches came from analysing students’ problem solving experiences that involve or rely mainly on the use of paper and pencil work. Thus, there is a need to re-examined principles and frameworks to explain what learners develop in learning environments that incorporate systematically the coordinated use of digital technologies (Hoyles and Lagrange 2010 ). In this perspective, it becomes important to briefly describe and identify what both multiple purpose and ad hoc technologies can offer to the students in terms of extending learning environments and representing and exploring mathematical tasks. Specifically, a task is used to identify features of mathematical reasoning that emerge through the use digital technologies that include both mathematical action and multiple purpose types of technologies.
1.3.3 Background
Digital technologies are omnipresent and their use permeates and shapes several social and academic events. Mobile devices such as tablets or smart phones are transforming the way people communicate, interact and carry out daily activities. Churchill et al. ( 2016 ) pointed out that mobile technologies provide a set of tools and affordances to structure and support learning environments in which learners continuously interact to construct knowledge and solve problems. The tools include resources or online materials, efficient connectivity to collaborate and discuss problems, ways to represent, explore and store information, and analytical and administration tools to management learning activities. Schmidt and Cohen ( 2013 ) stated that nowadays it is difficult to imagine a life without mobile devices, and communication technologies are playing a crucial role in generating both cultural and technical breakthroughs. In education, the use of mobile artefacts and computers offers learners the possibility of continuing and extending peers and groups’ mathematical discussions beyond formal settings. In this process, learners can also consult online materials and interact with experts, peers or more experienced students while working on mathematical tasks. In addition, dynamic geometry systems (GeoGebra) provide learners a set of affordances to represent and explore dynamically mathematical problems. Leung and Bolite-Frant ( 2015 ) pointed out that tools help activate an interactive environment in which teachers and students’ mathematical experiences get enriched. Thus, the digital age brings new challenges to the mathematics education community related to the changes that technologies produce to curriculum, learning scenarios, and ways to represent, explore mathematical situations. In particular, it is important to characterize the type of reasoning that learners can develop as a result of using digital technologies in their process of learning concepts and solving mathematical problems.
1.3.4 A Focus on Mathematical Tasks
Mathematical tasks are essential elements for engaging learners in mathematical reasoning which involves representing objects, identifying and exploring their properties in order to detect invariants or relationships and ways to support them. Watson and Ohtani ( 2015 ) stated that task design involves discussions about mathematical content and students’ learning (cognitive perspective), about the students’ experiences to understand the nature of mathematical activities; and about the role that tasks played in teaching practices. In this context, tasks are the vehicle to present and discuss theoretical frameworks for supporting the use of digital technology, to analyse the importance of using digital technologies in extending learners’ mathematical discussions beyond formal settings, and to design ways to foster and assess the use of technologies in learners’ problem solving environments. In addition, it is important to discuss contents, concepts, representations and strategies involved in the process of using digital technologies in approaching the tasks. Similarly, it becomes essential to discuss what types of activities students will do to learn and solve the problems in an environment where the use of technologies fosters and values the participation and collaboration of all students. What digital technologies are important to incorporate in problem solving approaches? Dynamic Geometry Systems can be considered as a milestone in the development of digital technologies. Objects or mathematical situations can be represented dynamically through the use of a Dynamic Geometry System and learners or problem solvers can identify and examine mathematical relations that emerge from moving objects within the dynamic model (Moreno-Armella and Santos-Trigo 2016 ).
Leung and Bolite-Frant ( 2015 ) stated that “dynamic geometry software can be used in task design to cover a large epistemic spectrum from drawing precise robust geometrical figures to exploration of new geometric theorems and development of argumentation discourse” (p. 195). As a result, learners not only need to develop skills and strategies to construct dynamic configuration of problems; but also ways of relying on the tool’s affordances (quantifying parameters or objects attributes, generating loci, graphing objects behaviours, using sliders, or dragging particular elements within the configuration) in order to identify and support mathematical relations. What does it mean to represent and explore an object or mathematical situation dynamically?
A simple task that involves a rhombus and its inscribed circle is used to illustrate how a dynamic representation of these objects and embedded elements can lead learners to identify and examine mathematical properties of those objects in the construction of the configuration. To this end, learners are encouraged to pose and pursue questions to explain the behaviours of parameters or attributes of the family of objects that is generated as a result of moving a particular element within the configuration.
1.3.5 A Task: A Dynamic Rhombus
Figure 2 represents a rhombus APDB and its inscribed circle (O is intersection of diagonals AD and BP and the radius of the inscribed circle is the perpendicular segment from any side of the rhombus to point O), vertex P lies on a circle c centred at point A. Circle c is only a heuristic to generate a family of rhombuses. Thus, point P can be moved along circle c to generate a family of rhombuses. Indeed, based on the symmetry of the circle it is sufficient to move P on the semicircle B’CA to draw such a family of rhombuses.
A dynamic construction of a rhombus
1.3.6 Posing Questions
A goal in constructing a dynamic model or configuration of problems is always to identify and explore mathematical properties and relations that might result from moving objects within the model. How do the areas of both the rhombus and the inscribed circle behave when point P is moved along the arc B’CB? At what position of point P does the area of the rhombus or inscribed circle reach the maximum value? The coordinates of points S and Q (Fig. 3 ) are the x -value of point P and as y -value the corresponding area values of rhombus ABDP and the inscribed circle respectively. Figure 2 shows the loci of points S and Q when point P is moved along arc B’CB. Here, finding the locus via the use of GeoGebra is another heuristic to graph the area behaviour without making explicit the algebraic model of the area.
Graphic representation of the area variation of the family of rhombuses and inscribed circles generated when P is moved through arc B’CB
The area graphs provide information to visualize that in that family of generated rhombuses the maximum area value of the inscribed circle and rhombus is reached when the rhombus becomes a square (Fig. 4 ). That is, the controlled movement of particular objects is an important strategy to analyse the area variation of the family of rhombuses and their inscribed circles.
Visualizing the rhombus and the inscribed circle with maximum area
It is important to observe the identification of points P and Q in terms of the position of point P and the corresponding areas and the movement of point P was sufficient to generate both area loci. That is, the graph representation of the areas is achieved without having an explicit algebraic expression of the area variation. Clearly, the graphic representations provide information regarding the increasing or decreasing interval of both areas; it is also important to explore what properties both graphic representations hold. The goal is to argue that the area variation of the rhombus represents an ellipse and the area of the inscribed circle represents a parabola. An initial argument might involve selecting five points on each locus and using the tool to draw the corresponding conic section (Fig. 5 ). In this case, the tool affordances play an important role in generating the graphic representation of the areas’ behaviours and in identifying properties of those representations. In this context, the use of the tool can offer learners the opportunity to problematize (Santos-Trigo 2007 ) a simple mathematical object (rhombus) as a means to search for mathematical relations and ways to support them.
Drawing the conic section that passes through five points
1.3.7 Looking for Different Solutions Methods
Another line of exploration might involve asking for ways to construct a rhombus and its inscribed circle: Suppose that the side of the rhombus and the circle are given, how can you construct the rhombus that has that circle inscribed? Figure 6 shows the given data, segment A 1 B 1 and circle centred at O and radius OD. The initial goal is to draw the circle tangent to the given segment. To this end, segment AB is congruent to segment A 1 B 1 and on this segment a point P is chosen and a perpendicular to segment AB that passes through point P is drawn. Point C is on this perpendicular and the centre of a circle with radius OD and h is the perpendicular to line PC that passes through point C. Angle ACB changes when point P is moved along segment AB and point E and F are the intersection of line h and the circle with centre M the midpoint of AB and radius MA (Fig. 6 ).
Drawing segment AB tangent to the given circle
Figure 7 a shows the right triangle AFB as the base to construct the rhombus and the inscribed circle and Fig. 7 b shows the second solution based on triangle AEB.
a Drawing the rhombus and the inscribed circle. b Drawing the second solution
Another approach might involve drawing the given circle centred at the origin and the segment as EF with point E on the y-axis. Line OC is perpendicular to segment EF and the locus of point C when point E moves along the y-axis intersects the given circle (Fig. 8 a, b). Both figures show two solutions to draw the rhombus that circumscribe the given circle.
a and b Another solution that involves finding a locus of point C
In this example, the GeoGebra affordances not only are important to construct a dynamic model of the task; but also offer learners and opportunity to explore relations that emerge from moving objects within the model. As a result, learners can rely on different concepts and strategies to solve the tasks. The idea in presenting this rhombus task is to illustrate that the use of a Dynamic Geometry System provides affordances for learners to construct dynamic representation of mathematical objects or problems, to move elements within the representation to pose questions or conjectures to explain invariants or patterns among involved parameters; to search for arguments to support emerging conjectures, and to develop a proper language to communicate results.
1.3.8 Looking Back
Conceptual frameworks used to explain learners’ construction of mathematical knowledge need to capture or take into account the different ways of reasoning that students might develop as a result of using a set of tools during the learning experiences. Figure 9 show some digital technologies that learners can use for specific purpose at the different stages of problem solving activities.
The coordinated use of digital tools to engage learners in problem solving experiences
The use of a dynamic system (GeoGebra) provides a set of affordances for learners to conceptualize and represent mathematical objects and tasks dynamically. In this process, affordances such as moving objects orderly (dragging), finding loci of objects, quantifying objects attributes (lengths, areas, angles, etc.), using sliders to vary parameters, and examining family of objects became important to look for invariance or objects relationships. Likewise, analysing the parameters or objects behaviours within the configuration might lead learners to identify properties to support emerging mathematical relations. Thus, with the use of the tool, learners might conceptualize mathematical tasks as an opportunity for them to engage in mathematical activities that include constructing dynamic models of tasks, formulating conjectures, and always looking for different arguments to support them. Similarly, learners can use an online platform to share their ideas, problem solutions or questions in a digital wall and others students can also share ideas or solution methods and engaged in mathematical discussions that extend mathematical classroom activities.
1.4 Problem Posing: An Overview for Further Progress—Uldarico Malaspina Jurado
Problem posing and problem solving are two essential aspects of the mathematical activity; however, researchers in mathematics education have not emphasized their attention on problem posing as much as problem solving. In that sense, due to its importance in the development of mathematical thinking in students since the first grades, we agree with Ellerton’s statement ( 2013 ): “for too long, successful problem solving has been lauded as the goal; the time has come for problem posing to be given a prominent but natural place in mathematics curricula and classrooms” (pp. 100–101); and due to its importance in teacher training, with Abu-Elwan’s statement ( 1999 ):
While teacher educators generally recognize that prospective teachers require guidance in mastering the ability to confront and solve problems, what is often overlooked is the critical fact that, as teachers, they must be able to go beyond the role as problem solvers. That is, in order to promote a classroom situation where creative problem solving is the central focus, the practitioner must become skillful in discovering and correctly posing problems that need solutions. (p. 1)
Scientists like Einstein and Infeld ( 1938 ), recognized not only for their notable contributions in the fields they worked, but also for their reflections on the scientific activity, pointed out the importance of problem posing; thus it is worthwhile to highlight their statement once again:
The formulation of a problem is often more essential than its solution, which may be merely a matter of mathematical or experimental skills. To raise new questions, new possibilities, to regard old questions from a new angle, requires creative imagination and marks real advance in science. (p. 92)
Certainly, it is also relevant to remember mathematician Halmos’s statement ( 1980 ): “I do believe that problems are the heart of mathematics, and I hope that as teachers (…) we will train our students to be better problem posers and problem solvers than we are” (p. 524).
An important number of researchers in mathematics education has focused on the importance of problem posing, and we currently have numerous, very important publications that deal with different aspects of problem posing related to the mathematics education of students in all educational levels and to teacher training.
1.4.1 A Retrospective Look
Kilpatrick ( 1987 ) marked a historical milestone in research related to problem posing and points out that “problem formulating should be viewed not only as a goal of instruction but also as a means of instruction” (Kilpatrick 1987 , p. 123); and he also emphasizes that, as part of students’ education, all of them should be given opportunities to live the experience of discovering and posing their own problems. Drawing attention to the few systematic studies on problem posing performed until then, Kilpatrick contributes defining some aspects that required studying and investigating as steps prior to a theoretical building, though he warns, “attempts to teach problem-formulating skills, of course, need not await a theory” (p. 124).
Kilpatrick refers to the “Source of problems” and points out how virtually all problems students solve have been posed by another person; however, in real life “many problems, if not most, must be created or discovered by the solver, who gives the problem an initial formulation” (p. 124). He also points out that problems are reformulated as they are being solved, and he relates this to investigation, reminding us what Davis ( 1985 ) states that, “what typically happens in a prolonged investigation is that problem formulation and problem solution go hand in hand, each eliciting the other as the investigation progresses” (p. 23). He also relates it to the experiences of software designers, who formulate an appropriate sequence of sub-problems to solve a problem. He poses that a subject to be examined by teachers and researchers “is whether, by drawing students’ attention to the reformulating process and given them practice in it, we can improve their problem solving performance” (p. 130). He also points out that problems may be a mathematical formulation as a result of exploring a situation and, in that sense, “school exercises in constructing mathematical models of a situation presented by the teacher are intended to provide students with experiences in formulating problems.” (p. 131).
Another important section of Kilpatrick’s work ( 1987 ) is Processes of Problem Formulating , in which he considers association, analogy, generalization and contradiction. He believes the use of concept maps to represent concept organization, as cognitive scientists Novak and Gowin suggest, might help to comprehend such concepts, stimulate creative thinking about them, and complement the ideas Brown and Walter ( 1983 ) give for problem posing by association. Further, in the section “Understanding and developing problem formulating abilities”, he poses several questions, which have not been completely answered yet, like “Perhaps the central issue from the point of view of cognitive science is what happens when someone formulates the problem? (…) What is the relation between problem formulating, problem solving and structured knowledge base? How rich a knowledge base is needed for problem formulating? (…) How does experience in problem formulating add to knowledge base? (…) What metacognitive processes are needed for problem formulating?”
It is interesting to realize that some of these questions are among the unanswered questions proposed and analyzed by Cai et al. ( 2015 ) in Chap. 1 of the book Mathematical Problem Posing (Singer et al. 2015 ). It is worth stressing the emphasis on the need to know the cognitive processes in problem posing, an aspect that Kilpatrick had already posed in 1987, as we just saw.
1.4.2 Researches and Didactic Experiences
Currently, there are a great number of publications related to problem posing, many of which are research and didactic experiences that gather the questions posed by Kilpatrick, which we just commented. Others came up naturally as reflections raised in the framework of problem solving, facing the natural requirement of having appropriate problems to use results and suggestions of researches on problem solving, or as a response to a thoughtful attitude not to resign to solving and asking students to solve problems that are always created by others. Why not learn and teach mathematics posing one’s own problems?
1.4.3 New Directions of Research
Singer et al. ( 2013 ) provides a broad view about problem posing that links problem posing experiences to general mathematics education; to the development of abilities, attitudes and creativity; and also to its interrelation with problem solving, and studies on when and how problem-solving sessions should take place. Likewise, it provides information about research done regarding ways to pose new problems and about the need for teachers to develop abilities to handle complex situations in problem posing contexts.
Singer et al. ( 2013 ) identify new directions in problem posing research that go from problem-posing task design to the development of problem-posing frameworks to structure and guide teachers and students’ problem posing experiences. In a chapter of this book, Leikin refers to three different types of problem posing activities, associated with school mathematics research: (a) problem posing through proving; (b) problem posing for investigation; and (c) problem posing through investigation. This classification becomes evident in the problems posed in a course for prospective secondary school mathematics teachers by using a dynamic geometry environment. Prospective teachers posed over 25 new problems, several of which are discussed in the article. The author considers that, by developing this type of problem posing activities, prospective mathematics teachers may pose different problems related to a geometric object, prepare more interesting lessons for their students, and thus gradually develop their mathematical competence and their creativity.
1.4.4 Final Comments
This overview, though incomplete, allows us to see a part of what problem posing experiences involve and the importance of this area in students mathematical learning. An important task is to continue reflecting on the questions posed by Kilpatrick ( 1987 ), as well as on the ones that come up in the different researches aforementioned. To continue progressing in research on problem posing and contribute to a greater consolidation of this research line, it will be really important that all mathematics educators pay more attention to problem posing, seek to integrate approaches and results, and promote joint and interdisciplinary works. As Singer et al. ( 2013 ) say, going back to Kilpatrick’s proposal ( 1987 ),
Problem posing is an old issue. What is new is the awareness that problem posing needs to pervade the education systems around the world, both as a means of instruction (…) and as an object of instruction (…) with important targets in real-life situations. (p. 5)
Although it can be argued that there is a difference between creativity, discovery, and invention (see Liljedahl and Allan 2014 ) for the purposes of this book these will be assumed to be interchangeable.
Abu-Elwan, R. (1999). The development of mathematical problem posing skills for prospective middle school teachers. In A. Rogerson (Ed.), Proceedings of the International Conference on Mathematical Education into the 21st century: Social Challenges, Issues and Approaches , (Vol. 2, pp. 1–8), Cairo, Egypt.
Google Scholar
Ashcraft, M. (1989). Human memory and cognition . Glenview, Illinois: Scott, Foresman and Company.
Bailin, S. (1994). Achieving extraordinary ends: An essay on creativity . Norwood, NJ: Ablex Publishing Corporation.
Bibby, T. (2002). Creativity and logic in primary-school mathematics: A view from the classroom. For the Learning of Mathematics, 22 (3), 10–13.
Brown, S., & Walter, M. (1983). The art of problem posing . Philadelphia: Franklin Institute Press.
Bruder, R. (2000). Akzentuierte Aufgaben und heuristische Erfahrungen. In W. Herget & L. Flade (Eds.), Mathematik lehren und lernen nach TIMSS. Anregungen für die Sekundarstufen (pp. 69–78). Berlin: Volk und Wissen.
Bruder, R. (2005). Ein aufgabenbasiertes anwendungsorientiertes Konzept für einen nachhaltigen Mathematikunterricht—am Beispiel des Themas “Mittelwerte”. In G. Kaiser & H. W. Henn (Eds.), Mathematikunterricht im Spannungsfeld von Evolution und Evaluation (pp. 241–250). Hildesheim, Berlin: Franzbecker.
Bruder, R., & Collet, C. (2011). Problemlösen lernen im Mathematikunterricht . Berlin: CornelsenVerlag Scriptor.
Bruner, J. (1964). Bruner on knowing . Cambridge, MA: Harvard University Press.
Burton, L. (1999). Why is intuition so important to mathematicians but missing from mathematics education? For the Learning of Mathematics, 19 (3), 27–32.
Cai, J., Hwang, S., Jiang, C., & Silber, S. (2015). Problem posing research in mathematics: Some answered and unanswered questions. In F.M. Singer, N. Ellerton, & J. Cai (Eds.), Mathematical problem posing: From research to effective practice (pp.3–34). Springer.
Churchill, D., Fox, B., & King, M. (2016). Framework for designing mobile learning environments. In D. Churchill, J. Lu, T. K. F. Chiu, & B. Fox (Eds.), Mobile learning design (pp. 20–36)., lecture notes in educational technology NY: Springer.
Chapter Google Scholar
Collet, C. (2009). Problemlösekompetenzen in Verbindung mit Selbstregulation fördern. Wirkungsanalysen von Lehrerfortbildungen. In G. Krummheuer, & A. Heinze (Eds.), Empirische Studien zur Didaktik der Mathematik , Band 2, Münster: Waxmann.
Collet, C., & Bruder, R. (2008). Longterm-study of an intervention in the learning of problem-solving in connection with self-regulation. In O. Figueras, J. L. Cortina, S. Alatorre, T. Rojano, & A. Sepúlveda (Eds.), Proceedings of the Joint Meeting of PME 32 and PME-NA XXX, (Vol. 2, pp. 353–360).
Csíkszentmihályi, M. (1996). Creativity: Flow and the psychology of discovery and invention . New York: Harper Perennial.
Davis, P. J. (1985). What do I know? A study of mathematical self-awareness. College Mathematics Journal, 16 (1), 22–41.
Article Google Scholar
Dewey, J. (1933). How we think . Boston, MA: D.C. Heath and Company.
Dewey, J. (1938). Logic: The theory of inquiry . New York, NY: Henry Holt and Company.
Einstein, A., & Infeld, L. (1938). The evolution of physics . New York: Simon and Schuster.
Ellerton, N. (2013). Engaging pre-service middle-school teacher-education students in mathematical problem posing: Development of an active learning framework. Educational Studies in Math, 83 (1), 87–101.
Engel, A. (1998). Problem-solving strategies . New York, Berlin und Heidelberg: Springer.
English, L. (1997). Children’s reasoning processes in classifying and solving comparison word problems. In L. D. English (Ed.), Mathematical reasoning: Analogies, metaphors, and images (pp. 191–220). Mahwah, NJ: Lawrence Erlbaum Associates Inc.
English, L. (1998). Reasoning by analogy in solving comparison problems. Mathematical Cognition, 4 (2), 125–146.
English, L. D. & Gainsburg, J. (2016). Problem solving in a 21st- Century mathematics education. In L. D. English & D. Kirshner (Eds.), Handbook of international research in mathematics education (pp. 313–335). NY: Routledge.
Ghiselin, B. (1952). The creative process: Reflections on invention in the arts and sciences . Berkeley, CA: University of California Press.
Hadamard, J. (1945). The psychology of invention in the mathematical field . New York, NY: Dover Publications.
Halmos, P. (1980). The heart of mathematics. American Mathematical Monthly, 87 , 519–524.
Halmos, P. R. (1994). What is teaching? The American Mathematical Monthly, 101 (9), 848–854.
Hoyles, C., & Lagrange, J.-B. (Eds.). (2010). Mathematics education and technology–Rethinking the terrain. The 17th ICMI Study . NY: Springer.
Kilpatrick, J. (1985). A retrospective account of the past 25 years of research on teaching mathematical problem solving. In E. Silver (Ed.), Teaching and learning mathematical problem solving: Multiple research perspectives (pp. 1–15). Hillsdale, New Jersey: Lawrence Erlbaum.
Kilpatrick, J. (1987). Problem formulating: Where do good problem come from? In A. H. Schoenfeld (Ed.), Cognitive science and mathematics education (pp. 123–147). Hillsdale, NJ: Erlbaum.
Kline, M. (1972). Mathematical thought from ancient to modern times . NY: Oxford University Press.
Kneller, G. (1965). The art and science of creativity . New York, NY: Holt, Reinhart, and Winstone Inc.
Koestler, A. (1964). The act of creation . New York, NY: The Macmillan Company.
König, H. (1984). Heuristik beim Lösen problemhafter Aufgaben aus dem außerunterrichtlichen Bereich . Technische Hochschule Chemnitz, Sektion Mathematik.
Kretschmer, I. F. (1983). Problemlösendes Denken im Unterricht. Lehrmethoden und Lernerfolge . Dissertation. Frankfurt a. M.: Peter Lang.
Krulik, S. A., & Reys, R. E. (Eds.). (1980). Problem solving in school mathematics. Yearbook of the national council of teachers of mathematics . Reston VA: NCTM.
Krutestkii, V. A. (1976). The psychology of mathematical abilities in school children . University of Chicago Press.
Lesh, R., & Zawojewski, J. S. (2007). Problem solving and modeling. In F. K. Lester, Jr. (Ed.), The second handbook of research on mathematics teaching and learning (pp. 763–804). National Council of Teachers of Mathematics, Charlotte, NC: Information Age Publishing.
Lester, F., & Kehle, P. E. (2003). From problem solving to modeling: The evolution of thinking about research on complex mathematical activity. In R. Lesh & H. Doerr (Eds.), Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning and teaching (pp. 501–518). Mahwah, NJ: Lawrence Erlbaum.
Lester, F. K., Garofalo, J., & Kroll, D. (1989). The role of metacognition in mathematical problem solving: A study of two grade seven classes. Final report to the National Science Foundation, NSF Project No. MDR 85-50346. Bloomington: Indiana University, Mathematics Education Development Center.
Leung, A., & Bolite-Frant, J. (2015). Designing mathematical tasks: The role of tools. In A. Watson & M. Ohtani (Eds.), Task design in mathematics education (pp. 191–225). New York: Springer.
Liljedahl, P. (2008). The AHA! experience: Mathematical contexts, pedagogical implications . Saarbrücken, Germany: VDM Verlag.
Liljedahl, P., & Allan, D. (2014). Mathematical discovery. In E. Carayannis (Ed.), Encyclopedia of creativity, invention, innovation, and entrepreneurship . New York, NY: Springer.
Liljedahl, P., & Sriraman, B. (2006). Musings on mathematical creativity. For the Learning of Mathematics, 26 (1), 20–23.
Lompscher, J. (1975). Theoretische und experimentelle Untersuchungen zur Entwicklung geistiger Fähigkeiten . Berlin: Volk und Wissen. 2. Auflage.
Lompscher, J. (1985). Die Lerntätigkeit als dominierende Tätigkeit des jüngeren Schulkindes. In L. Irrlitz, W. Jantos, E. Köster, H. Kühn, J. Lompscher, G. Matthes, & G. Witzlack (Eds.), Persönlichkeitsentwicklung in der Lerntätigkeit . Berlin: Volk und Wissen.
Mason, J., & Johnston-Wilder, S. (2006). Designing and using mathematical tasks . St. Albans: Tarquin Publications.
Mason, J., Burton, L., & Stacey, K. (1982). Thinking mathematically . Harlow: Pearson Prentice Hall.
Mayer, R. (1982). The psychology of mathematical problem solving. In F. K. Lester & J. Garofalo (Eds.), Mathematical problem solving: Issues in research (pp. 1–13). Philadelphia, PA: Franklin Institute Press.
Mevarech, Z. R., & Kramarski, B. (1997). IMPROVE: A multidimensional method for teaching mathematics in heterogeneous classrooms. American Educational Research Journal, 34 (2), 365–394.
Mevarech, Z. R., & Kramarski, B. (2003). The effects of metacognitive training versus worked-out examples on students’ mathematical reasoning. British Journal of Educational Psychology, 73 , 449–471.
Moreno-Armella, L., & Santos-Trigo, M. (2016). The use of digital technologies in mathematical practices: Reconciling traditional and emerging approaches. In L. English & D. Kirshner (Eds.), Handbook of international research in mathematics education (3rd ed., pp. 595–616). New York: Taylor and Francis.
National Council of Teachers of Mathematics (NCTM). (1980). An agenda for action . Reston, VA: NCTM.
National Council of Teachers of Mathematics (NCTM). (2000). Principles and standards for school mathematics . Reston, VA: National Council of Teachers of Mathematics.
Newman, J. (2000). The world of mathematics (Vol. 4). New York, NY: Dover Publishing.
Novick, L. (1988). Analogical transfer, problem similarity, and expertise. Journal of Educational Psychology: Learning, Memory, and Cognition, 14 (3), 510–520.
Novick, L. (1990). Representational transfer in problem solving. Psychological Science, 1 (2), 128–132.
Novick, L. (1995). Some determinants of successful analogical transfer in the solution of algebra word problems. Thinking & Reasoning, 1 (1), 5–30.
Novick, L., & Holyoak, K. (1991). Mathematical problem solving by analogy. Journal of Experimental Psychology, 17 (3), 398–415.
Pehkonen, E. K. (1991). Developments in the understanding of problem solving. ZDM—The International Journal on Mathematics Education, 23 (2), 46–50.
Pehkonen, E. (1997). The state-of-art in mathematical creativity. Analysis, 97 (3), 63–67.
Perels, F., Schmitz, B., & Bruder, R. (2005). Lernstrategien zur Förderung von mathematischer Problemlösekompetenz. In C. Artelt & B. Moschner (Eds.), Lernstrategien und Metakognition. Implikationen für Forschung und Praxis (pp. 153–174). Waxmann education.
Perkins, D. (2000). Archimedes’ bathtub: The art of breakthrough thinking . New York, NY: W.W. Norton and Company.
Poincaré, H. (1952). Science and method . New York, NY: Dover Publications Inc.
Pólya, G. (1945). How to solve It . Princeton NJ: Princeton University.
Pólya, G. (1949). How to solve It . Princeton NJ: Princeton University.
Pólya, G. (1954). Mathematics and plausible reasoning . Princeton: Princeton University Press.
Pólya, G. (1964). Die Heuristik. Versuch einer vernünftigen Zielsetzung. Der Mathematikunterricht , X (1), 5–15.
Pólya, G. (1965). Mathematical discovery: On understanding, learning and teaching problem solving (Vol. 2). New York, NY: Wiley.
Resnick, L., & Glaser, R. (1976). Problem solving and intelligence. In L. B. Resnick (Ed.), The nature of intelligence (pp. 230–295). Hillsdale, NJ: Lawrence Erlbaum Associates.
Rusbult, C. (2000). An introduction to design . http://www.asa3.org/ASA/education/think/intro.htm#process . Accessed January 10, 2016.
Santos-Trigo, M. (2007). Mathematical problem solving: An evolving research and practice domain. ZDM—The International Journal on Mathematics Education , 39 (5, 6): 523–536.
Santos-Trigo, M. (2014). Problem solving in mathematics education. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 496–501). New York: Springer.
Schmidt, E., & Cohen, J. (2013). The new digital age. Reshaping the future of people nations and business . NY: Alfred A. Knopf.
Schoenfeld, A. H. (1979). Explicit heuristic training as a variable in problem-solving performance. Journal for Research in Mathematics Education, 10 , 173–187.
Schoenfeld, A. H. (1982). Some thoughts on problem-solving research and mathematics education. In F. K. Lester & J. Garofalo (Eds.), Mathematical problem solving: Issues in research (pp. 27–37). Philadelphia: Franklin Institute Press.
Schoenfeld, A. H. (1985). Mathematical problem solving . Orlando, Florida: Academic Press Inc.
Schoenfeld, A. H. (1987). What’s all the fuss about metacognition? In A. H. Schoenfeld (Ed.), Cognitive science and mathematics education (pp. 189–215). Hillsdale, NJ: Lawrence Erlbaum Associates.
Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 334–370). New York, NY: Simon and Schuster.
Schön, D. (1987). Educating the reflective practitioner . San Fransisco, CA: Jossey-Bass Publishers.
Sewerin, H. (1979): Mathematische Schülerwettbewerbe: Beschreibungen, Analysen, Aufgaben, Trainingsmethoden mit Ergebnissen . Umfrage zum Bundeswettbewerb Mathematik. München: Manz.
Silver, E. (1982). Knowledge organization and mathematical problem solving. In F. K. Lester & J. Garofalo (Eds.), Mathematical problem solving: Issues in research (pp. 15–25). Philadelphia: Franklin Institute Press.
Singer, F., Ellerton, N., & Cai, J. (2013). Problem posing research in mathematics education: New questions and directions. Educational Studies in Mathematics, 83 (1), 9–26.
Singer, F. M., Ellerton, N. F., & Cai, J. (Eds.). (2015). Mathematical problem posing. From research to practice . NY: Springer.
Törner, G., Schoenfeld, A. H., & Reiss, K. M. (2007). Problem solving around the world: Summing up the state of the art. ZDM—The International Journal on Mathematics Education, 39 (1), 5–6.
Verschaffel, L., de Corte, E., Lasure, S., van Vaerenbergh, G., Bogaerts, H., & Ratinckx, E. (1999). Learning to solve mathematical application problems: A design experiment with fifth graders. Mathematical Thinking and Learning, 1 (3), 195–229.
Wallas, G. (1926). The art of thought . New York: Harcourt Brace.
Watson, A., & Ohtani, M. (2015). Themes and issues in mathematics education concerning task design: Editorial introduction. In A. Watson & M. Ohtani (Eds.), Task design in mathematics education, an ICMI Study 22 (pp. 3–15). NY: Springer.
Zimmermann, B. (1983). Problemlösen als eine Leitidee für den Mathematikunterricht. Ein Bericht über neuere amerikanische Beiträge. Der Mathematikunterricht, 3 (1), 5–45.
Further Reading
Boaler, J. (1997). Experiencing school mathematics: Teaching styles, sex, and setting . Buckingham, PA: Open University Press.
Borwein, P., Liljedahl, P., & Zhai, H. (2014). Mathematicians on creativity. Mathematical Association of America.
Burton, L. (1984). Thinking things through . London, UK: Simon & Schuster Education.
Feynman, R. (1999). The pleasure of finding things out . Cambridge, MA: Perseus Publishing.
Gardner, M. (1978). Aha! insight . New York, NY: W. H. Freeman and Company.
Gardner, M. (1982). Aha! gotcha: Paradoxes to puzzle and delight . New York, NY: W. H. Freeman and Company.
Gardner, H. (1993). Creating minds: An anatomy of creativity seen through the lives of Freud, Einstein, Picasso, Stravinsky, Eliot, Graham, and Ghandi . New York, NY: Basic Books.
Glas, E. (2002). Klein’s model of mathematical creativity. Science & Education, 11 (1), 95–104.
Hersh, D. (1997). What is mathematics, really? . New York, NY: Oxford University Press.
Root-Bernstein, R., & Root-Bernstein, M. (1999). Sparks of genius: The thirteen thinking tools of the world’s most creative people . Boston, MA: Houghton Mifflin Company.
Zeitz, P. (2006). The art and craft of problem solving . New York, NY: Willey.
Download references
Author information
Authors and affiliations.
Faculty of Education, Simon Fraser University, Burnaby, BC, Canada
Peter Liljedahl
Mathematics Education Department, Cinvestav-IPN, Centre for Research and Advanced Studies, Mexico City, Mexico
Manuel Santos-Trigo
Pontificia Universidad Católica del Perú, Lima, Peru
Uldarico Malaspina
Technical University Darmstadt, Darmstadt, Germany
Regina Bruder
You can also search for this author in PubMed Google Scholar
Corresponding author
Correspondence to Peter Liljedahl .
Rights and permissions
Open Access This chapter is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, a link is provided to the Creative Commons license and any changes made are indicated.
The images or other third party material in this chapter are included in the work’s Creative Commons license, unless indicated otherwise in the credit line; if such material is not included in the work’s Creative Commons license and the respective action is not permitted by statutory regulation, users will need to obtain permission from the license holder to duplicate, adapt or reproduce the material.
Reprints and permissions
Copyright information
© 2016 The Author(s)
About this chapter
Liljedahl, P., Santos-Trigo, M., Malaspina, U., Bruder, R. (2016). Problem Solving in Mathematics Education. In: Problem Solving in Mathematics Education. ICME-13 Topical Surveys. Springer, Cham. https://doi.org/10.1007/978-3-319-40730-2_1
Download citation
DOI : https://doi.org/10.1007/978-3-319-40730-2_1
Published : 28 June 2016
Publisher Name : Springer, Cham
Print ISBN : 978-3-319-40729-6
Online ISBN : 978-3-319-40730-2
eBook Packages : Education Education (R0)
Share this chapter
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
- Publish with us
Policies and ethics
- Find a journal
- Track your research
6 Tips for Teaching Math Problem-Solving Skills
Solving word problems is tougher than computing with numbers, but elementary teachers can guide students to do the deep thinking involved.
Your content has been saved!
A growing concern with students is the ability to problem-solve, especially with complex, multistep problems. Data shows that students struggle more when solving word problems than they do with computation , and so problem-solving should be considered separately from computation. Why?
Consider this. When we’re on the way to a new destination and we plug in our location to a map on our phone, it tells us what lane to be in and takes us around any detours or collisions, sometimes even buzzing our watch to remind us to turn. When I experience this as a driver, I don’t have to do the thinking. I can think about what I’m going to cook for dinner, not paying much attention to my surroundings other than to follow those directions. If I were to be asked to go there again, I wouldn’t be able to remember, and I would again seek help.
If we can switch to giving students strategies that require them to think instead of giving them too much support throughout the journey to the answer, we may be able to give them the ability to learn the skills to read a map and have several ways to get there.
Here are six ways we can start letting students do this thinking so that they can go through rigorous problem-solving again and again, paving their own way to the solution.
1. Link problem-solving to reading
When we can remind students that they already have many comprehension skills and strategies they can easily use in math problem-solving, it can ease the anxiety surrounding the math problem. For example, providing them with strategies to practice, such as visualizing, acting out the problem with math tools like counters or base 10 blocks, drawing a quick sketch of the problem, retelling the story in their own words, etc., can really help them to utilize the skills they already have to make the task less daunting.
We can break these skills into specific short lessons so students have a bank of strategies to try on their own. Here's an example of an anchor chart that they can use for visualizing . Breaking up comprehension into specific skills can increase student independence and help teachers to be much more targeted in their problem-solving instruction. This allows students to build confidence and break down the barriers between reading and math to see they already have so many strengths that are transferable to all problems.
2. Avoid boxing students into choosing a specific operation
It can be so tempting to tell students to look for certain words that might mean a certain operation. This might even be thoroughly successful in kindergarten and first grade, but just like when our map tells us where to go, that limits students from becoming deep thinkers. It also expires once they get into the upper grades, where those words could be in a problem multiple times, creating more confusion when students are trying to follow a rule that may not exist in every problem.
We can encourage a variety of ways to solve problems instead of choosing the operation first. In first grade, a problem might say, “Joceline has 13 stuffed animals and Jordan has 17. How many more does Jordan have?” Some students might choose to subtract, but a lot of students might just count to find the amount in between. If we tell them that “how many more” means to subtract, we’re taking the thinking out of the problem altogether, allowing them to go on autopilot without truly solving the problem or using their comprehension skills to visualize it.
3. Revisit ‘representation’
The word “representation” can be misleading. It seems like something to do after the process of solving. When students think they have to go straight to solving, they may not realize that they need a step in between to be able to support their understanding of what’s actually happening in the problem first.
Using an anchor chart like one of these ( lower grade , upper grade ) can help students to choose a representation that most closely matches what they’re visualizing in their mind. Once they sketch it out, it can give them a clearer picture of different ways they could solve the problem.
Think about this problem: “Varush went on a trip with his family to his grandmother’s house. It was 710 miles away. On the way there, three people took turns driving. His mom drove 214 miles. His dad drove 358 miles. His older sister drove the rest. How many miles did his sister drive?”
If we were to show this student the anchor chart, they would probably choose a number line or a strip diagram to help them understand what’s happening.
If we tell students they must always draw base 10 blocks in a place value chart, that doesn’t necessarily match the concept of this problem. When we ask students to match our way of thinking, we rob them of critical thinking practice and sometimes confuse them in the process.
4. Give time to process
Sometimes as educators, we can feel rushed to get to everyone and everything that’s required. When solving a complex problem, students need time to just sit with a problem and wrestle with it, maybe even leaving it and coming back to it after a period of time.
This might mean we need to give them fewer problems but go deeper with those problems we give them. We can also speed up processing time when we allow for collaboration and talk time with peers on problem-solving tasks.
5. Ask questions that let Students do the thinking
Questions or prompts during problem-solving should be very open-ended to promote thinking. Telling a student to reread the problem or to think about what tools or resources would help them solve it is a way to get them to try something new but not take over their thinking.
These skills are also transferable across content, and students will be reminded, “Good readers and mathematicians reread.”
6. Spiral concepts so students frequently use problem-solving skills
When students don’t have to switch gears in between concepts, they’re not truly using deep problem-solving skills. They already kind of know what operation it might be or that it’s something they have at the forefront of their mind from recent learning. Being intentional within their learning stations and assessments about having a variety of rigorous problem-solving skills will refine their critical thinking abilities while building more and more resilience throughout the school year as they retain content learning in the process.
Problem-solving skills are so abstract, and it can be tough to pinpoint exactly what students need. Sometimes we have to go slow to go fast. Slowing down and helping students have tools when they get stuck and enabling them to be critical thinkers will prepare them for life and allow them multiple ways to get to their own destination.
Making Sense of Mathematics
Teaching Mathematics through Problem Solving- An Upside-Down Approach
By inviting children to solve problems in their own ways, we are initiating them into the community of mathematicians who engage in structuring and modeling their “lived worlds” mathematically.
Fosnot and Jacob, 2007
Teaching mathematics through problem solving requires you to think about the types of tasks you pose to students, how you facilitate discourse in your classroom, and how you support students use of a variety of representations as tools for problem solving, reasoning, and communication.
This is a different approach from “do-as-I-show-you” approach where the teacher shows all the mathematics, demonstrates strategies to solve a problem, and then students just have to practice that exact same skill/strategy, perhaps using a similar problem.
Teaching mathematics through problem solving means that students solve problems to learn new mathematics through real contexts, problems, situations, and strategies and models that allow them to build concept and make connections on their own.
The main difference between the traditional approach “I-do-you-do” and teaching through problem solving, is that the problem is presented at the beginning of the lesson, and the skills, strategies and ideas emerge when students are working on the problem. The teacher listens to students’ responses and examine their work, determining the moment to extend students’ thinking and providing targeted feedback.
Here are the 4 essential moves in a math lesson using a student-centered approach or problem-solving approach:
- Number Talk (5-8 min) (Connection)
The mini-lesson starts with a Number Talk. The main purpose of a Number Talk is:
*to build number sense, and
*to provide opportunities for students to explain their thinking and respond to the mathematical thinking of others.
Please refer to the document Int§roducing Number Talks . Or watch this video with Sherry Parrish to gain understanding about how Number Talks can build fluency with your students.
Here are some videos of Number Talks so you can observe some of the main teaching moves.
The role of the teacher during a number talk is crucial. He/she needs to listen carefully to the way student is explaining his/her reasoning, then use a visual representation of what the student said. Other students also share their strategies, and the teacher represents those strategies as well. Students then can visualize a variety of strategies to solve a problem. They learn how to use numbers flexibly, there is not just one way to solve a problem. When students have a variety if strategies in their math tool box, they can solve any problem, they can make connections with mathematical concepts.
There are a variety of resources that can be used for Math Talks. Note : the main difference between Number Talks and Math Talks, is that one allows students to use numbers flexibly leading them to fluency, develop number sense, and opportunities to communicate and reason with mathematics; the other allows for communicating and reasoning, building arguments to critique the reasoning of others, the use of logical thinking, and the ability to recognize different attributes to shapes and other figures and make sense of the mathematics involved.
- 2. Using problems to teach (5-8 min) Mini Lesson
Problems that can serve as effective tasks or activities for students to solve have common features. Use the following points as a guide to assess if the problem/task has the potential to be a genuine problem:
*Problem should be appropriate to their current understanding, and yet still find it challenging and interesting.
*The main focus of the problem should allow students to do the mathematics they need to learn, the emphasis should be on making sense of the problem, and developing the understanding of the mathematics. Any context should not overshadow the mathematics to be learned.
*Problems must require justification, students explain why their solution makes sense. It is not enough when the teacher tells them their answer is correct.
*Ideally, a problem/task should have multiple entries. For example “find 3 factors whose product is 108”, instead of just “multiplying 3 numbers. “
The most important part of the mini-lesson is to avoid teaching tricks or shortcuts, or plain algorithms. Our goal is always to help guide students to understand why the math works (conceptual understanding). And most importantly how different mathematical concepts/ideas are connected! “Math is a connected subject” Jo Boaler’s video
“Students can learn mathematics through exploring and solving contextual and mathematical problems vs. students can learn to apply mathematics only after they have mastered the basic skills.” By Steve Leinwand author of Principles to Action .
- 3. Active Engagement (20-30 min)
This is the opportunity for students to work with partners or independently on the problem, making connections of what they know, and trying to use the strategy that makes sense to them. Always making sure to represent the problem with a visual representation. It can be any model that helps student understand what the problem is about.
The job of the teacher during this time, is to walk around asking questions to students to guide them in the right direction, but without telling too much. Allowing students to come up with their own solutions and justifications.
- Teacher can clarify any questions around the problem, not the solution.
- Teacher emphasizes reasoning to make sense of the problem/task.
- Teacher encourages student-student dialogue to help build a sense of self.
Some lessons will include a rich task, or a project based learning, or a number problem (find 3 numbers whose product is 108). There are a variety of learning target tasks to choose from, for each grade level on the Assessment Live Binders website created by Erma Anderson and Project AERO.
Again, keep in mind that some lessons will follow a different structure depending on the learning target for that day. Regardless of instructional design, the teacher should not be doing the thinking, reasoning, and connection building; it must be the students who are engaged in these activities
- 4. Share (8-12 min) (Link)
The most crucial part of the lesson is here. This is where the teaching/learning happens, not only learning from teacher, but learning from peers reaching their unique “zone of proximal development” (Vygotsky, 1978).
We bring back our students to share how they solved their problem. Sometimes they share with a partner first, to make sure they are using the right vocabulary, and to make sure they make sense of their answer. Then a few of them can share with the rest of the class. But sharing with a partner first is helpful so everyone has the opportunity to share.
“Talk to each other and the teacher about ideas – Why did I choose this method? Does it work in other cases? How is the method similar or different to methods other people used?” Jo Boaler’s article “How Students Should Be Taught Mathematics.”
Students make sense of their solution. The teacher listens and makes connections between different strategies that students are sharing. Teacher paraphrases the strategy student described, perhaps linking it with an efficient strategy.
“It is a misperception that student-centered classrooms don’t include any lecturing. At times it’s essential the teacher share his or her expertise with the larger group. Students could drive the discussion and the teacher guides and facilitates the learning.” Trevor MacKenzie
If the target for today’s lesson was to introduce the use a number line, for example, this is where the teacher will share that strategy as another possible way to solve today’s problem!
This could also be a good time for any formative assessment, using See Saw, using exit slips, or any kind of evidence of what they learned today.
References.
“Teaching Student-Centered Mathematics” Table 2.1 page 26 , Van de Walle, Karp, Lovin, Bay-Williams
“Number Talks” , Sherry Parrish
“How Students Should be Taught Mathematics: Reflections from Research and Practice” Jo Boaler
“Erma Anderson, Project AERO Assessments live binders
“Principles to Action” , Steve Leinwand
“ Turning Teaching Upside Down “, by Cathy Seeley
“Four Inquiry Qualities At The Heart of Student-Centered Teaching”
By Trevor MacKenzie
“The Zone of Proximal Development” Vygotsky, 1978
*** Here is a link to my favorite places to plan Math padlet, you will find a variety of resources, videos, articles, etc. By Caty Romero
***One more padlet for many resources to plan, teach, and assess mathematics that make sense: Making Sense of Mathematics Padlet.
Share this:
- learning math
- making sense of math
- number sense
Published by Caty Romero - Math Specialist
Passionate about learning and making sense of mathematics. Teacher, Math Learning Specialist, K-8 Math Consultant, and Instructional Coach. Student-Centered-Learning is my approach! Contact me at [email protected] or follow me on Twitter @catyrmath View all posts by Caty Romero - Math Specialist
Leave a comment Cancel reply
- Already have a WordPress.com account? Log in now.
- Subscribe Subscribed
- Copy shortlink
- Report this content
- View post in Reader
- Manage subscriptions
- Collapse this bar
Mathematics for Teaching
This site is NOT about making mathematics easy because it isn't. It is about making it make sense because it does.
Teaching through Problem Solving
Problem solving is not only the reason for teaching and learning mathematics. It is also the means for learning it. In the words of Hiebert et al:
Students should be allowed to make the subject problematic. … Allowing the subject to be problematic means allowing students to wonder why things are, to inquire, to search for solutions, and to resolve incongruities. It means that both curriculum and instruction should begin with problems, dilemmas, and questions for students. (Hiebert, et al, 1996, p. 12)
For years now, UP NISMED in-service training programs for teachers have organized mathematics lessons for teachers using the strategy we call Teaching through Problem Solving (TtPS). This teaching strategy had also been tried by teachers in their classes and the results far outweighed the disadvantages anticipated by the teachers.
Teaching through problem solving provides context for reviewing previously learned concepts and linking it to the new concepts to be learned. It provides context for students to experience working with the new concepts before they are formally defined and manipulated procedurally, thus making definitions and procedures meaningful to them.
What are the characteristics of a TtPS?
- main learning activity is problem solving
- concepts are learned in the context of solving a problem
- students think about math ideas without having the ideas pre-explained
- students solve problems without the teacher showing a solution to a similar problem first
What is the typical lesson sequence organized around TtPS?
- An which can be solved in many ways is posed to the class.
- Students initially work on the problem on their own then join a group to share their solutions and find other ways of solving the problem. (Role of teacher is to encourage pupils to try many possible solutions with minimum hints)
- Students studies/evaluates solutions. (Teacher ask learners questions like “Which solutions do you like most? Why?”)
- Teacher asks questions to help students make connections among concepts
- Teacher/students extend the problem.
What are the theoretical underpinnings of TtPS strategy?
- Constructivism
- Vygotsky’s Zone of Proximal Development ( ZPD )
Click here for sample lesson using Teaching through Problem Solving to teach the tangent ratio/function .
The best resource for improving one’s problem solving skills is still these books by George Polya.
- Click to share on Facebook (Opens in new window)
- Click to share on LinkedIn (Opens in new window)
- Click to share on Twitter (Opens in new window)
- Click to share on Reddit (Opens in new window)
- Click to email a link to a friend (Opens in new window)
View All Posts
14 thoughts on “ Teaching through Problem Solving ”
- Pingback: Use of exercises and problem solving in math teaching
- Pingback: When is a math problem a problem? - Mathematics for Teaching
- Pingback: Teaching math with Mr Khan - Mathematics for Teaching
- Pingback: Bloom's Taxonomy and iPad Apps - Mathematics for Teaching
- Pingback: » Theories and ideas behind the math lessons in this blog » Mathematics for Teaching
- Pingback: » How to teach combining algebraic expressions with conceptual understanding » Mathematics for Teaching
- Pingback: » Math Lessons in Mathematics for Teaching » Mathematics for Teaching
- Pingback: » How to teach triangle congruence through problem solving » Mathematics for Teaching
- Pingback: » The Counting Principle, Pascal’s Triangle, and Powers of 2 » Mathematics for Teaching
A fun addition to this, I have found, is to get the class to solve a mastermind game as a group. Cracking the code involves a reasonable amount of logical thinking and playing it as a group encourages people to learn from each other.
- Pingback: Misunderstanding of Understanding by Design | Keeping Mathematics Simple
- Pingback: Teaching the properties of equality through problem solving « keeping mathematics simple
- Pingback: Introducing the concept of function « keeping math simple
Phillips Exeter Academy has their whole math curriculum designed around a problem-based system. I have adopted/adapted this for my calculus and geometry classes.
Comments are closed.
Teaching Mathematics Through Problem Solving
By Tom McDougal, Akihiko Takahashi
What do your students do when faced with a math problem they don't know how to solve? Most students give up pretty quickly. At best, they seek help from another student or the teacher. At worst, they shut down, seeing their failure as more evidence that they just aren't good at math. Neither of these behaviors will serve students in the long run. Inevitably, someday, every one of your students will encounter problems that they will not have explicitly studied in school and their ability to find a solution will have important consequences for them.
In the Common Core State Standards for Mathematics, the very first Standard for Mathematical Practice is that students should “understand problems and persevere in solving them.”1 Whether you are beholden to the Common Core or not, this is certainly something you would wish for your students. Indeed, the National Council of Teachers of Mathematics (NCTM) has been advocating for a central role for problem solving at least since the release of Agenda for Action in 1980, which said, “Problem solving [must] be the focus of school mathematics… .”2
The common instructional model of “I do, we do, you do,” increases student dependence on the teacher and decreases students’ inclination to persevere. How, then, can teachers develop perseverance in problem solving in their students?
First we should clarify what we mean by “problem solving.” According to NCTM, “Problem solving means engaging in a task for which the solution is not known in advance.”3 A task does not have to be a word problem to qualify as a problem — it could be an equation or calculation that students have not previously learned to solve. Also, the same task can be a problem or not, depending on when it is given. Early in the year, before students learn a particular skill, the task could be a problem; later, it becomes an exercise, because now they know how to solve it.
In Japan, math educators have been thinking about how to develop problem solving for several decades. They studied George Polya's How to Solve It ,4 NCTM's Agenda for Action , and other documents, and together, using a process called lesson study , they began exploring what it would mean to make problem solving “the focus of school mathematics.” And they succeeded. Today, most elementary mathematics lessons in Japan are organized around the solving of one or a very few problems, using an approach known as “teaching through problem solving.”
“Teaching through problem solving” needs to be clearly distinguished from “teaching problem solving.” The latter, which is not uncommon in the United States, focuses on teaching certain strategies — guess-and-check, working backwards, drawing a diagram, and others. In a lesson about problem solving, students might work on a problem and then share with the class how using one of these strategies helped them solve the problem. Other students applaud, the students sit down, and the lesson ends. These lessons are usually outside the main flow of the curriculum; indeed, they are purposely independent of any curriculum.
In “teaching through problem solving,” on the other hand, the goal is for students to learn precisely that mathematical idea that the curriculum calls for them to learn next.
A “teaching through problem solving” lesson would begin with the teacher setting up the context and introducing the problem. Students then work on the problem for about 10 minutes while the teacher monitors their progress and notes which students are using which approaches. Then the teacher begins a whole-class discussion. Similar to a “teaching problem solving” lesson, the teacher may call on students to share their ideas, but, instead of ending the lesson there, the teacher will ask students to think about and compare the different ideas — which ideas are incorrect and why, which ideas are correct, which ones are similar to each other, which ones are more efficient or more elegant. Through this discussion, the lesson enables students to learn new mathematical ideas or procedures. This approach is represented in Figure 1.
Let's illustrate this with an example from a hypothetical fifth-grade lesson based on the most popular elementary mathematics textbook in Japan. (This textbook has been translated into English as Mathematics International and is available at http://GlobalEdResources.com . 5) During most Japanese lessons, the textbook is closed, but the textbook shows how the authors think the lesson might play out.
When the lesson begins, the blackboard is completely empty. The teacher starts by displaying, either with a poster or using a projector, the picture from the textbook of four different rabbit cages, shown in Figure 2 (it is not uncommon for Japanese elementary students to care for rabbits in several rabbit hutches, so this is a familiar context).
Figure 2 (Mathematics International, Grade 5, p. A93)
“What do you notice about the cages?” the teacher asks. Some students notice that some of the cages are different sizes. The teacher then asks, “Should each cage have the same number of rabbits?” No, say the students, smaller cages should have fewer rabbits, so the rabbits aren't too crowded.
The teacher then displays the pictures in Figure 3. “What do you think?” the teacher asks, as he puts them up one at a time for dramatic effect. “Are these equally crowded, or do you think some cages are more crowded than others?” There is some discussion about the rabbits in cage B, and students decide that just because they are bunched together right now, they probably won't stay that way. Students recognize that cages A and B are the same size, and since cage A has more rabbits (9 vs. 8), it is more crowded. The teacher writes that observation on the board: “When two cages are the same size, the one with more rabbits is more crowded.”
Figure 3 (Mathematics International, Grade 5, p. A93)
“What about the others?” he asks. “How can we decide which are more crowded?” This last question becomes the key mathematical question of the lesson, and the teacher writes it on the board: “Let's think about how to compare crowdedness.” Students copy this problem in their notebooks while he writes.
The teacher gives students a piece of paper with the pictures from Figure 3 to glue in their notebooks and gives them 5 minutes to think about the problem. Several students take a ruler and begin measuring. “Why are you doing that?” the teacher quietly asks one of them. “I want to figure out the area,” the student says. “Oh! You think the area might be important. Write that idea in your notebook.” Other students count the rabbits and decide that B and C are equally crowded because they look like they are the same size, but they are unsure about D.
The teacher stops the students and asks for ideas. He first calls on a student who thinks that B and C are the same size. He records her idea on the board: “Arthi says B and C look like they are the same size and have the same number of rabbits, so they are equally crowded.” A student who found the areas says that they are not. The teacher records this idea on the board: “Karen thinks you need to know the area.” He turns to the first student. “Arthi, what do you think?” he asks. She and other students agree. The teacher posts a table with the areas of the four cages (Figure 4). “Let's copy this table into our notebooks, and think about the problem some more.”
Figure 4 (Mathematics International, Grade 5, p. A94)
Students work independently for another 5 minutes while the teacher monitors their progress, encourages them to keep thinking, and reminds them to record their ideas in their notebook. He anticipates the following five ideas and notes which students are using them:
Idea 1: B and C have the same number of rabbits, but C has a smaller area, so C is more crowded. Unsure about A vs. C.
Idea 2: If you make 5 copies of A and 6 copies of C, they would have the same area (30 m2). A would then have 45 rabbits while C would have 48 rabbits, so C is more crowded.
Idea 3: If you make 8 copies of A and 9 copies of C, they would have the same number of rabbits (72). A would have an area of 48 m2 while C would have an area of 45 m2, so B is more crowded.
Idea 4: Divide: (area) ÷ (# of rabbits) = amount of area per rabbit
Idea 5: Divide: (# of rabbits) ÷ (area) = number of rabbits per unit area
The teacher invites students to explain their ideas to the class, selecting students based on the order above, while he records each idea on the blackboard. He asks students to compare Idea 1 to the thinking used to compare A and B. He writes on the board: “If either the area or the number of rabbits is the same, it's easy to compare.” The student with Idea 2 says, “I found a way to make the area the same,” and explains. This prompts the student with Idea 3 to say, “I used kind of the same approach to make the number of rabbits the same.”
When a student with Idea 4 comes up, she begins, “I decided to divide the area by the number of rabbits.” The teacher stops her. He writes: “(area) ÷ (# of rabbits).” Then he asks the class, “Why is she doing this? Who can explain her thinking?” Another student says, “That gives the amount of area for each rabbit.” He lets the student finish her idea:
A: 9÷6 = 1.5 C: 8÷5 = 1.6
The teacher asks the class to clarify what the 1.5 and 1.6 mean (m2 per rabbit) and what that says about the crowdedness of each cage.
He then invites a student to explain Idea 5: “I divided the other way…”
A: 6÷9 = 0.66… C: 5÷8 = 0.625
“Why is he doing this?” the teacher asks the class. “What does this 0.66… mean? What does 0.625 mean?” (“Rabbits per square meter,” the students answer.)
The teacher then asks the class to look for similarities across the five ideas, which are all visible on the blackboard. Some students note that Ideas 2 and 3 use multiplication while Ideas 4 and 5 use division, a superficial similarity. But some students notice the more significant connection that 2 and 5 are both about making the area the same, while 3 and 4 are both about making the number of rabbits the same.
“We haven't talked about cage D yet,” the teacher points out. “How shall we compare A, C, and D? Please try using one of these ideas.”
Students work in their notebooks for a few minutes. Students who try using multiplication (Idea 2 or 3) discover that the method is cumbersome. The teacher invites students who used Ideas 4 and 5 to share their calculations, adding them to the lists from before: Idea 4:
A: 9÷6 = 1.5 C: 8÷5 = 1.6 D: 15÷9 = 1.66… (m2/rabbit) Idea 5: A: 6÷9 = 0.66… C: 5÷8 = 0.625 D: 9÷15 = 0.6 (rabbits/m2)
“What do you think about these ideas?” asks the teacher, and students respond, “They are easy!” So the teacher writes a summary on the board, “Using division, it is easy to compare crowdedness.” He asks the students to write a reflection in their notebooks. One student who used multiplication writes, “I tried using multiplication, but dividing is easier. Next time I want to try that.” And the lesson ends.
In the students’ previous experience with comparing quantities, a single quantity was important, such as the number of apples or kilograms or square meters. Their prior experience with division was about finding a missing multiplier or multiplicand, which was itself a single quantity. This problem presented students for the first time with a situation in which two numbers needed to be considered. So by working on a problem about rabbits and cages, students learn that division can be used to compute a new type of quantity, a per unit quantity, that expresses the relationship between rabbits and area and can be used to compare crowdedness. In subsequent lessons, students will see how division can be used to compute other types of per unit quantities, such as the productivity of two farms in crops grown per acre of land or the cost per pencil.
What was the teacher's role in helping students learn this new mathematical idea? He never explained anything to the students, but the task had to be carefully constructed, and the teacher had to be very deliberate in how he directed the lesson, or the lesson wouldn't have worked.
The task was accessible to all students in the beginning by the fact that two cages had the same area (A and B) and two cages had the same number of rabbits (B and C), but since it wasn't clear whether B and C were the same size, students were pushed to think formally about area. And, while using multiplication was feasible for comparing cages A and C, the area of cage D was such that multiplication was cumbersome for comparing all three cages. Students who might have been happy with using multiplication and uncomfortable with the decimal values that result from division were pushed by cage D to appreciate the efficiency of using division.
The teacher's role in the lesson can be compared to the role of a film director, who carefully stages each scene and makes cuts between cameras to create the desired effect. Early in the lesson, the teacher highlighted the idea, raised by students, that equal areas or equal numbers of rabbits made comparisons easier. This was the foundation for the idea of dividing to find a “per unit quantity,” square meters per one rabbit or rabbits per one square meter. By starting with a discussion of incorrect or partially correct ideas and writing them on the board, the teacher valued those ideas. This encourages students to try: Even if they can’t solve the whole problem, they might come up with something to contribute. When a student first suggested the idea of dividing, the teacher asked other students to explain the thinking behind it. This enabled students who did not themselves think of dividing to make the idea their own. And by carefully organizing student ideas on the board (Figure 5), the teacher made it easier for students to compare those ideas with each other and to follow the flow of learning in the lesson.
Figure 5 (includes items from Mathematics International, Grade 5, pp. A93-94)
Although the lesson vignette above is fictional, videos of lessons like it can be found at http://tinyurl.com/kuwb4bg . The grade 3 lesson “Multiplication Algorithm” and the grade 5 lesson “Do I Have a Window Seat or an Aisle Seat?” are particularly good, both for the quality of the lessons and for the quality of the videos themselves.
Japanese educators believe that regular lessons that teach through problem solving, interspersed with occasional practice days, help their students learn mathematics more thoroughly than didactic instruction coupled with a greater amount of practice. Certainly Japanese students have performed very well on the TIMSS and PISA international studies of mathematics achievement. But perhaps more important, teaching through problem solving habituates students to being confronted with unfamiliar problems, to struggling at length with those problems, and to learning from those problems. This is a way to cultivate perseverance in problem solving.
Reading this article and watching videos, however, will not equip most teachers to incorporate teaching through problem solving into their practice. The teacher who wishes to do so is faced with several challenges. The first challenge is that few curricula are designed to support such lessons; most are designed to support fairly direct instruction by the teacher. The second problem is that students are not used to learning this way and may resist. And the third problem is that teaching this way is hard. It requires ways of thinking about a lesson that are unfamiliar to almost all U.S. teachers. One needs to be absolutely clear about what the mathematical goal of the lesson is; that goal is never for students to simply solve a problem. One needs to anticipate the various solutions, correct and incorrect, that are likely to come from students, as well as the ways students will get stuck. One needs to plan how the discussion around the various student ideas will address misconceptions and build toward the mathematical goal of the lesson. One needs to think about how the ideas will be organized on the board so that students can easily compare them.
Japanese teachers certainly did not learn to teach this way by reading articles or watching videos. They learned it — and continue to learn it — by trying it, together, one lesson at a time through a process called lesson study .6,7 A full treatment of lesson study would be another article in itself, but U.S. teachers who are interested in learning to teach through problem solving can find more information about lesson study at http://LessonStudyGroup.net and at http://LSAlliance.org . Lesson Study Alliance organizes the annual Chicago Lesson Study Conference, which features live lessons by teachers who are working to incorporate teaching through problem solving into their practice.
1. National Governors Association Center for Best Practices, Council of Chief State School Officers, Common Core State Standards for Mathematics (Washington, DC: National Governors Association Center for Best Practices, Council of Chief State School Officers, 2010); online at www.corestandards.org/math/ . 2. National Council of Teachers of Mathematics, An Agenda for Action: Recommendations for School Mathematics of the 1980s (Washington, DC: NCTM, 1980); online at www.nctm.org/standards/content.aspx?id=17278 . 3. National Council of Teachers of Mathematics, Principles and Standards for School Mathematics (Washington, DC: NCTM, 2000); online at http://www.nctm.org/standards/content.aspx?id=16909 . 4. George Polya, How to Solve It: A New Aspect of Mathematical Method (Princeton, NJ: Princeton University Press, 1945). 5. T. Fujii and S. Iitaka, Mathematics International , Grades 1-6 (Tokyo: Tokyo Shoseki Co., Ltd., 2012). 6. Akihiko Takahashi, “Implementing Lesson Study in North American Schools and School Districts” (no date); online at http://hrd.apec.org/images/a/ae/51.2.pdf . 7. Akihiko Takahashi and Makoto Yoshida, “Ideas for Establishing Lesson-Study Communities.” Teaching Children Mathematics , May 2004.
Tom McDougal is executive director of Lesson Study Alliance in Chicago, a nonprofit organization that promotes and supports Lesson Study. He taught middle and high school mathematics and was an elementary math specialist.
Akihiko Takahashi is associate professor of mathematics education at DePaul University in Chicago. He taught students in grades 1-6 for 19 years in Japan, where he helped lead the national shift to teaching mathematics through problem solving.
Let’s Talk About Writing: Using Talk as a Pre-Writing Tool
Writing doesn’t always come easy. But what if we offered students a new process to gather and edit their thoughts?.
Read the Post
What research tells us about teaching mathematics through problem solving
- January 2003
- University of Delaware
- This person is not on ResearchGate, or hasn't claimed this research yet.
Discover the world's research
- 25+ million members
- 160+ million publication pages
- 2.3+ billion citations
- Ratchanee Karawad
- Komkind Punpeng
- Setianingsih SISKA
- Shaobo Huang
- Think Skills Creativ
- Cheng Zhang
- Thomas A. Romberg
- Mary C. Shafer
- Nobuo K. Shimahara
- James Hiebert
- Thomas P. Carpenter
- Elizabet Fennema
- Karen C. Fuson
- Diane Wearne
- Deborah Loewenberg Ball
- National Council Teachers Mathematics
- Nancy J. Grochowski
- Recruit researchers
- Join for free
- Login Email Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google Welcome back! Please log in. Email · Hint Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google No account? Sign up
Math Fluency Is All About Problem-Solving. Do We Teach It That Way?
- Share article
To learn math, students must build a mental toolbox of facts and procedures needed for different problems.
But students who can recall these foundational facts in isolation often struggle to use them flexibly to solve complex, real-world problems , known as procedural fluency.
“Mathematics is not just normalizing procedures and implementing them when somebody tells you to use that procedure. Mathematics is solving problems,” said Bethany Rittle-Johnson, a professor of psychology and human development at Peabody College in Vanderbilt University, who studies math instruction. “To solve problems, we have to figure out what strategy to use when—and that tends to get too little attention.”
In a series of ongoing experiments, Rittle-Johnson and her colleagues find students develop better procedural fluency when they get opportunities to compare and contrast problem-solving approaches and justify the approaches they use in different situations. While some students may develop this skill on their own, most need explicit instruction, she found.
Rittle-Johnson spoke with Education Week about how teachers can use such comparisons to help students develop a deeper understanding of math. This interview has been edited for space and clarity.
For more on the best research-based strategies on improving math instruction, see Education Week’s new math mini-course .
How often do teachers talk to students about multiple strategies, and how to select them, in math problem-solving?
Students in the [United States] are very rarely doing rich contextual problems. Even more rarely, they’re being asked to compare strategies to solve them. I don’t hear teachers talk about [using different strategies] a lot, and textbooks tend to do a pretty bad job of explaining it.
For example, in Algebra 1, solving systems of equations, there are many standard solutions strategies that are taught in separate chapters and textbooks, ... but I see shockingly little time spent having students think and compare and choose which strategy to use. In one study where teachers were trained [to compare math strategies], only about 20 percent did in the classroom—and only about 5 percent of teachers who [did not receive training.]
Sometimes I hear teachers say, “Well, multiple strategies, that’s great for my high-end learners, but I don’t want to show that to my struggling learners. … So maybe multiple strategies is the ideal, but I’m not going to get to it because I’m tight on time and my kids are behind.” But we hear from struggling learners that they really appreciate the multiple strategies and we see that it helps them, too, across the grade bands and across contexts.
How can teachers decide when to bring in and compare different strategies while introducing a new math concept?
We find comparisons can be useful in all different phases of instruction.
It can be helpful for kids to have had some time to think about one strategy before they think about multiple strategies, maybe at most a lesson. But the risk is in general, if you wait too long, kids just get attached to one strategy. You run the risk of kids becoming really attached to one strategy, and then they become more resistant to wanting to think about and use multiple strategies.
What does this sort of comparison look like in the classroom?
One best practice is to have the steps of the different strategies written out. It can be kids’ strategies that they wrote on the board. It can be projecting strategies from textbooks or your solutions, but one thing we know is: Make sure both strategies are visible so that kids don’t have to remember. Then we ask kids to think about similarities and differences and think about, when is each a good strategy?
Sometimes we have students compare correct and incorrect strategies and explain the concepts that make the correct strategy correct. Just because you teach kids correct ways of doing things, that doesn’t mean the incorrect strategies disappear. Students really need help thinking and reasoning through why those are wrong.
What are the more common struggles for teachers to teach multiple strategies?
The No. 1 barrier we face is time. Teachers just feel they’re under so much pressure to cover so much content that they feel like they can’t take the time to do this, and that they see the value and the payoff in it. It does pay off for what is assessed [in standardized math tests], but it’s not directly assessed, and so that makes teachers nervous.
Also, sometimes teachers really don’t like to say this way is better than this other way. Even though mathematicians would say, “yeah, this way is clearly better in this context, and this other way is clearly better in that context,” ... sometimes teachers feel uncomfortable that they’re making a value judgment.
But the evidence is really clear that it’s helpful to show correct and incorrect examples and talk through them.
Sign Up for EdWeek Update
Edweek top school jobs.
Sign Up & Sign In
📬 Sign Up for Our Amazing Newsletter!
Writing result-oriented ad copy is difficult, as it must appeal to, entice, and convince consumers to take action.
Why It's So Important to Learn a Problem-Solving Approach to Mathematics
was invited to the Math Olympiad Summer Program (MOP) in the 10th grade. I went to MOP certain that I must really be good at math. But in my five weeks at MOP, I encountered over sixty problems on various tests and I didn’t solve a single one. That’s right—I was 0-for-60+. I came away no longer confident that I was good at math. I assumed that most of the other kids did better at MOP because they knew more tricks than I did. My formula sheets were pretty thorough, but perhaps they were missing something. By the end of MOP, I had learned a somewhat unsettling truth. The others knew fewer tricks than I did, not more. They didn’t even have formula sheets!
At another contest later that summer, a younger student, Alex, from another school asked me for my formula sheets. In my local and state circles, students’ formula sheets were the source of knowledge, the source of power that fueled the top students and the top schools. They were studied, memorized, revered. But most of all, they were not shared. But when Alex asked for my formula sheets I remembered my experience at MOP and I realized that formula sheets are not really math . Memorizing formulas is no more mathematics than memorizing dates is history or memorizing spelling words is literature. I gave him the formula sheets. (Alex must later have learned also that the formula sheets were fool’s gold—he became a Rhodes scholar.)
The difference between MOP and many of these state and local contests I participated in was the difference between problem solving and what many people call mathematics. For these people, math is a series of tricks to use on a series of specific problems. Trick A is for Problem A, Trick B for Problem B, and so on. In this vein, school can become a routine of learn tricks for a week, use tricks on a test, forget most tricks quickly. The tricks get forgotten quickly primarily because there are so many of them, and also because the students don’t see how these ‘tricks’ are just extensions of a few basic principles.
I had painfully learned at MOP that true mathematics is not a process of memorizing formulas and applying them to problems tailor-made for those formulas. Instead, the successful mathematician possesses fewer tools, but knows how to apply them to a much broader range of problems. We use the term problem solving to distinguish this approach to mathematics from the memorize, use, forget approach.
After MOP I relearned math throughout high school. I was unaware that I was learning much more. When I got to Princeton I enrolled in organic chemistry. There were over 200 students in the course, and we quickly separated into two groups. One group understood that all we would be taught could largely be derived from a very small number of basic principles. We loved the class—it was a year-long exploration of where these fundamental concepts could take us. The other, much larger, group saw each new destination not as the result of a path from the building blocks, but as yet another place whose coordinates had to be memorized if ever they were to visit again. Almost to a student, the difference between those in the happy group and those in the struggling group was how they learned mathematics. The class seemingly involved no math at all, but those who took a memorization approach to math were doomed to do it again in chemistry. The skills the problem solvers developed in math transferred, and these students flourished.
We use math to teach problem solving because it is the most fundamental logical discipline. Not only is it the foundation upon which sciences are built, it is the clearest way to learn and understand how to develop a rigorous logical argument. There are no loopholes, there are no half-truths. The language of mathematics is as precise as it is ‘right’ and ‘wrong’ (or ‘proven’ and ‘unproven’). Success and failure are immediate and indisputable; there isn’t room for subjectivity. This is not to say that those who cannot do math cannot solve problems. There are many paths to strong problem-solving skills. Mathematics is the shortest .
Problem solving is crucial in mathematics education because it transcends mathematics. By developing problem-solving skills, we learn not only how to tackle math problems, but also how to logically work our way through any problems we may face. The memorizer can only solve problems he has encountered already, but the problem solver can solve problems she’s never seen before. The problem solver is flexible; she can diversify. Above all, she can create .
Subscribe for news, tips and advice from AoPS
Richard rusczyk, related articles, the math of big-money lotteries: your chances of winning the powerball jackpot, knowing versus understanding: how the rubik’s cube taught me the difference, running a math lover’s dream school, with sam vandervelde, more articles, farther in space, further in time: what the james webb space telescope will show us, alcumus: a peek under the hood of our adaptive learning tool, stop making silly mistakes, the new yorker features richard rusczyk and aops global community, roadschooling, with kay akpan and robyn robledo, writing award-winning science fiction, with catherine asaro, more episodes, sapienship, with dr. jim clarke, wonder, with dr. frank keil, learning stem through fiction, with dr. pamela cosman, managing academic expectations, with charlene wang, edtech at-home, with monica burns, learned helplessness, with vida john, receive weekly podcast summaries right to your inbox, get weekly podcast summaries/takeaways.
By clicking this button, I consent to receiving AoPS communications, and confirm that I am over 13, or under 13 and already a member of the Art of Problem Solving community. View our Privacy Policy .
Aops programs
Center for Teaching
Teaching problem solving.
Print Version
Tips and Techniques
Expert vs. novice problem solvers, communicate.
- Have students identify specific problems, difficulties, or confusions . Don’t waste time working through problems that students already understand.
- If students are unable to articulate their concerns, determine where they are having trouble by asking them to identify the specific concepts or principles associated with the problem.
- In a one-on-one tutoring session, ask the student to work his/her problem out loud . This slows down the thinking process, making it more accurate and allowing you to access understanding.
- When working with larger groups you can ask students to provide a written “two-column solution.” Have students write up their solution to a problem by putting all their calculations in one column and all of their reasoning (in complete sentences) in the other column. This helps them to think critically about their own problem solving and helps you to more easily identify where they may be having problems. Two-Column Solution (Math) Two-Column Solution (Physics)
Encourage Independence
- Model the problem solving process rather than just giving students the answer. As you work through the problem, consider how a novice might struggle with the concepts and make your thinking clear
- Have students work through problems on their own. Ask directing questions or give helpful suggestions, but provide only minimal assistance and only when needed to overcome obstacles.
- Don’t fear group work ! Students can frequently help each other, and talking about a problem helps them think more critically about the steps needed to solve the problem. Additionally, group work helps students realize that problems often have multiple solution strategies, some that might be more effective than others
Be sensitive
- Frequently, when working problems, students are unsure of themselves. This lack of confidence may hamper their learning. It is important to recognize this when students come to us for help, and to give each student some feeling of mastery. Do this by providing positive reinforcement to let students know when they have mastered a new concept or skill.
Encourage Thoroughness and Patience
- Try to communicate that the process is more important than the answer so that the student learns that it is OK to not have an instant solution. This is learned through your acceptance of his/her pace of doing things, through your refusal to let anxiety pressure you into giving the right answer, and through your example of problem solving through a step-by step process.
Experts (teachers) in a particular field are often so fluent in solving problems from that field that they can find it difficult to articulate the problem solving principles and strategies they use to novices (students) in their field because these principles and strategies are second nature to the expert. To teach students problem solving skills, a teacher should be aware of principles and strategies of good problem solving in his or her discipline .
The mathematician George Polya captured the problem solving principles and strategies he used in his discipline in the book How to Solve It: A New Aspect of Mathematical Method (Princeton University Press, 1957). The book includes a summary of Polya’s problem solving heuristic as well as advice on the teaching of problem solving.
Teaching Guides
Quick Links
- Services for Departments and Schools
- Examples of Online Instructional Modules
Powerful online learning at your pace
What IS Problem-Solving?
Ask teachers about problem-solving strategies, and you’re opening a can of worms! Opinions about the “best” way to teach problem-solving are all over the board. And teachers will usually argue for their process quite passionately.
When I first started teaching math over 25 years ago, it was very common to teach “keywords” to help students determine the operation to use when solving a word problem. For example, if you see the word “total” in the problem, you always add. Rather than help students become better problem solvers, the use of keywords actually resulted in students who don’t even feel the need to read and understand the problem–just look for the keywords, pick out the numbers, and do the operation indicated by the keyword.
This post contains affiliate links, which simply means that when you use my link and purchase a product, I receive a small commission. There is no additional cost to you, and I only link to books and products that I personally use and recommend.
Another common strategy for teaching problem-solving is the use of acrostics that students can easily remember to perform the “steps” in problem-solving. CUBES is an example. Just as with keywords, however, students often follow the steps with little understanding. As an example, a common step is to underline or highlight the question. But if you ask students why they are underlining or highlighting the question, they often can’t tell you. The question is , in fact, super important, but they’ve not been told why. They’ve been told to underline the question, so they do.
The problem with both keywords and the rote-step strategies is that both methods try to turn something that is inherently messy into an algorithm! It’s way past time that we leave both methods behind.
First, we need to broaden the definition of problem-solving. Somewhere along the line, problem-solving became synonymous with “word problems.” In reality, it’s so much more. Every one of us solves dozens or hundreds of problems every single day, and most of us haven’t solved a word problem in years. Problem-solving is often described as figuring out what to do when you don’t know what to do. My power went out unexpectedly this morning, and I have work to do. That’s a problem that I had to solve. I had to think about what the problem was, what my options were, and formulate a plan to solve the problem. No keywords. No acrostics. I’m using my phone as a hotspot and hoping my laptop battery doesn’t run out. Problem solved. For now.
If you want to get back to what problem-solving really is, you should consult the work of George Polya. His book, How to Solve It , which was first published in 1945, outlined four principles for problem-solving. The four principles are: understand the problem, devise a plan, carry out the plan, and look back. This document from UC Berkeley’s Mathematics department is a great 4-page overview of Polya’s process. You can probably see that the keyword and rote-steps strategies were likely based on Polya’s method, but it really got out of hand. We need to help students think , not just follow steps.
I created both primary and intermediate posters based on Polya’s principles. Grab your copies for free here !
I would LOVE to hear your comments about problem-solving!
Similar Posts
Teaching Math for a Deep Understanding
It’s no surprise that subtraction with regrouping is a difficult concept for kiddos. If you were asked why it’s difficult, what would you say? In her groundbreaking book, Knowing and…
Rethinking the Hundred Chart
If you are reading this post, you have probably used a hundred chart or a 120 chart in your classroom. The patterns within the chart help students develop important place…
Comparing Fractions: Like Numerators or Denominators
What is the difference between teaching for knowledge and teaching for understanding? Isn’t that a great question? In his book Creating Cultures of Thinking, author Ron Ritchhart tackles that issue…
Assessing Computational Fluency
I taught 5th grade for many years before stepping into the coaching role. Every year, I had kiddos come to me who could not subtract with regrouping, let alone multiply…
Making Sense of Rounding
Have you ever thought that maybe people who think they are not good at math really have just never been taught math in a way that makes sense to them?…
Two Ways to Approach Measurement Conversions
Measurement conversions. Answer honestly, do those words scare you just a little? I’ve got two tried and true approaches to teaching measurement conversions, and it shouldn’t come as a surprise…
Do you tutor teachers?
I do professional development for district and schools, and I have online courses.
You make a great point when you mentioned that teaching students to look for “keywords” is not teaching students to become better problem solvers. I was once guilty of using the CUBES strategy, but have since learned to provide students with opportunity to grapple with solving a problem and not providing them with specified steps to follow.
I think we’ve ALL been there! We learn and we do better. 🙂
Love this article and believe that we can do so much better as math teachers than just teaching key words! Do you have an editable version of this document? We are wanting to use something similar for our school, but would like to tweak it just a bit. Thank you!
I’m sorry, but because of the clip art and fonts I use, I am not able to provide an editable version.
Hi Donna! I am working on my dissertation that focuses on problem-solving. May I use your intermediate poster as a figure, giving credit to you in my citation with your permission, for my section on Polya’s Traditional Problem-Solving Steps? You laid out the process so succinctly with examples that my research could greatly benefit from this image. Thank you in advance!
Absolutely! Good luck with your dissertation!
Leave a Reply Cancel reply
Your email address will not be published. Required fields are marked *
Guidance for Parents to Help Their Children Learn Mathematics
by Robert Schoen | October 5, 2020 Blog
In many households, expectations for parents to be involved in helping their children learn mathematics feels higher now than ever.
We think that all parents can benefit from having a few guiding principles for supporting their child’s math learning at home.
Claire Riddell and Laura Steele are two experienced teachers who compiled some recommendations to share with parents. Their recommendations are consistent with a CGI approach to teaching. The recommendations are provided below.
We are always on the lookout for good resources and ideas to support parent involvement in their child’s mathematics learning. We may expand the TiPS website to create a section that focuses directly on parent involvement.
If you know of useful resources to support parent involvement, please let us know so that we can share them with others. You can send them directly to me at [email protected] .
For now, I hope you Claire and Laura’s tips to be useful.
Helping Your Child Learn Math at Home
All children are natural problem solvers. We offer a few suggestions to help you work with your child at home to learn math.
Three Things to Consider
Let your child do the thinking and the talking. One of the most important things you can do is listen. Your role as a listener is crucial to assisting your child’s development. Invite your child to share his or her strategy for solving problems and be patient while they try to explain. As you know, trying to explain something that you are still learning can be difficult and uncomfortable. You can help your child to learn by being a patient listener and providing opportunities for them to try to explain multiple times in different ways.
Everyday items in your household can be math tools. Regardless of the problem’s context, many household items can help your child solve problems. Cheerios, pennies, rocks, dry beans, toys, and so much more can be used by your child to solve problems. Before your child starts working, gather a set of items to have within reach for your child to use while solving problems.
Focus more on the process and less on the answer. Compliment your child’s effort, sense making, and attempts to express their ideas in words and in writing. While we ultimately want children to arrive at a correct answer, the real learning and thinking happens while they are solving the problem. Celebrate the process.
Three Questions to Ask
- “How did you get [your answer]?” Avoid asking “what is your answer” and instead ask your child to explain his or her thinking. Children sometimes arrive at an incorrect answer, but when given the opportunity to explain their solution, they identify and correct their own mistakes.
- “How did you know to do that?” Children often think if you ask them a question about how they solve a problem, it indicates their answer is wrong. Asking, “How did you know to do that?” encourages children to share their reasoning and thinking. Get in the habit of asking questions often so your child knows that explaining themselves is just a part of doing math.
- “Can you explain how you did that?” Children memorize math facts, which is good, but we can learn about the depth of their understanding when we ask children to demonstrate on paper or with math tools what their thinking looks like in a concrete form. Answers like, “I am smart” or “I just knew that” do not show a depth of knowledge. However, when asked to demonstrate their thinking in concrete ways or through verbal explanations, you’ll have a better understanding of their child’s mathematics knowledge.
Three Things to Try (When Your Child Seems Stuck)
- Focus on what your child does know and understand. Does your child understand the problem? Instead of showing them how to solve it, ask them to explain what they know about the problem. If it is a story problem, ask your child to picture the story in their mind or draw a picture of what is happening.
- Invite your child to draw a picture of the problem or act it out with objects. By creating a concrete representation, the problem can become less abstract and children are better able to access what the problem is asking and find possible solutions.
- Don’t be afraid to leave a problem. Ask your child, “Would you like to continue with this problem, or would you like to come back to it later?” Giving your child the permission to choose whether to continue or not is empowering. Being a part of the decision-making process may empower your child and help them to grow as a person. Of course, if it is a mandatory homework assignment, it will need to be revisited in the allotted time (if the choice was to come back later), and the child will need to consider that too.
Download these tips as a PDF
Robert C. Schoen, Ph.D., is an associate professor of mathematics education in the School of Teacher Education at Florida State University. He is also the Associate Director of LSI’s Florida Center for Research in Science, Technology, Engineering, and Mathematics (FCR–STEM) and the founder and director of Teaching is Problem Solving . His research involves mathematical cognition, the mathematical education of teachers, the development and validation of educational and psychological measurement instruments, and evaluation of the effectiveness of educational interventions.
AskRose Tutoring provides free help to K-12 students
Askrose tutoring provides free help to k-12 students.
TERRE HAUTE, Ind. (WISH) — The Rose-Hulman Institute of Technology is once again offering free math and science tutoring help for K-12 students. This is the 33rd year for the AskRose Program.
Alisha Mastakar is a Rose-Hulman student in her third year tutoring in the program. She joined Daybreak to discuss the benefits for local students.
“I just really love helping others with math and science and especially I love helping foster a passion for STEM in younger students. It’s really nice to be able to kind of see that ‘aha moment’ when tutoring those middle and high school students as they finally understand the problem. AskRose is more than just helping with homework, but also teaching students how to develop those sort of problem-solving skills so that they can solve different Similar problems in the future. And hopefully just grow a love for STEM the way that I do,” Mastakar said.
According to AskRose, the tutors help students understand their homework, arrive at answers themselves, and prepare to tackle similar questions on their own.
When students are stumped by a math or science problem:
- Students can call, email, or chat online with a tutor.
- The tutor starts the session by reviewing the problem.
- The tutor guides students through the problem(s) until the student understands the solution.
“We basically help walk the students through what problems they have. We really try to emphasize helping the students learn how to solve the problems themselves rather than just lecturing at them. And being really encouraging and hoping that students can learn those skills,” Mastakar said.
Tutors are available virtually and can help students who speak English or Spanish.
“We have tutors whose native language is Spanish. So they will be able to speak in Spanish and give math and science homework help to students whose first language is Spanish. So that sort of help is also accessible to them,” Mastakar said.
Tutoring is available Sunday through Thursday from 5 p.m. to 10 p.m.
Anyone interested in free tutoring can learn more online or call 1-877-ASK-ROSE (1-877-275-7673).
Trending stories
- AC’S Football Challenge
- Difficult Friday ahead in Indiana due to Hurricane Helene
- Students in southern Indiana staying home as remnants of Helene roll in
- ‘Super mom’ sentenced to 14 years in death of 4-month-old daughter
- Richmond man kills 2 police informants, dumps bodies in Fort Wayne, police say
MORE STORIES
- International
- Education Jobs
- Schools directory
- Resources Education Jobs Schools directory News Search
Social Story: Solving Problems Together | Social Skills | Conflict Resolution
Subject: Special educational needs
Age range: 5 - 11
Resource type: Lesson (complete)
Last updated
23 September 2024
- Share through email
- Share through twitter
- Share through linkedin
- Share through facebook
- Share through pinterest
Social Story: Solving Problems Together
Problem-solving amongst peers is an important life skill, but is often challenging for our students. Like any other skill, problem solving requires practice in order to get better at it. This social story helps students to develop healthy boundaries and relationships with their peers, and to navigate how to problem-solve and engage in conversation without creating conflict or negative feelings.
This 12-page social story conveys these themes using practical examples, engaging visuals, and developmentally appropriate language. It is best suited to K-6, and special education settings. We hope this social story helps you, help the children you work with!
What You Will Receive: 1 high-quality PDF file 8.5"x11" in size 12 Pages
How to Use:
- After uploading product, save file to your device
- Print either at home, or via local print provider or online print service
- Bind, laminate, or place in duotang to use with your students
Personal Note: Should you require a different file format or size, let us know and we can do this for you.
We love what we do and so would appreciate your feedback and review so we can continue to provide practical resources to our fellow educators. THANK YOU.
Tes paid licence How can I reuse this?
Your rating is required to reflect your happiness.
It's good to leave some feedback.
Something went wrong, please try again later.
This resource hasn't been reviewed yet
To ensure quality for our reviews, only customers who have purchased this resource can review it
Report this resource to let us know if it violates our terms and conditions. Our customer service team will review your report and will be in touch.
COMMENTS
Teaching about problem solving begins with suggested strategies to solve a problem. For example, "draw a picture," "make a table," etc. You may see posters in teachers' classrooms of the "Problem Solving Method" such as: 1) Read the problem, 2) Devise a plan, 3) Solve the problem, and 4) Check your work. There is little or no ...
Brief. Problem solving plays an important role in mathematics and should have a prominent role in the mathematics education of K-12 students. However, knowing how to incorporate problem solving meaningfully into the mathematics curriculum is not necessarily obvious to mathematics teachers. (The term "problem solving" refers to mathematical ...
Then, I provided them with the "keys to success.". Step 1 - Understand the Problem. To help students understand the problem, I provided them with sample problems, and together we did five important things: read the problem carefully. restated the problem in our own words. crossed out unimportant information.
Problem solving in mathematics education has been a prominent research field that aims at understanding and relating the processes involved in solving problems to students' development of mathematical knowledge and problem solving competencies. The accumulated knowledge and field developments include conceptual frameworks to characterize ...
Telling a student to reread the problem or to think about what tools or resources would help them solve it is a way to get them to try something new but not take over their thinking. These skills are also transferable across content, and students will be reminded, "Good readers and mathematicians reread.". 6.
Teaching mathematics through problem solving requires you to think about the types of tasks you pose to students, how you facilitate discourse in your classroom, and how you support students use of a variety of representations as tools for problem solving, reasoning, and communication. This is a different approach from "do-as-I-show-you ...
"It is important to understand that mathematics is to be taught through problem solving. That is, problem-based tasks or activities are the vehicle by which the desired curriculum is developed. The learning is an outcome of the problem-solving process." Van de Walle, 2007. Powerful words from the late Mr. van de Walle.
Problem solving is not only the reason for teaching and learning mathematics. It is also the means for learning it. In the words of Hiebert et al: Students should be allowed to make the subject problematic. … Allowing the subject to be problematic means allowing students to wonder why things are, to inquire, to search for solutions, and to resolve incongruities.
Effective teaching of mathematics engages students in solving and discussing tasks that promote mathematical reasoning and problem solving and allow multiple entry points and varied solution strategies.-NCTM (2014), p. 17
1999). However, teaching mathematics through problem solving is a relatively new idea in the history of problem solving in the mathematics curriculum (Lester, 1994). In fact, because teaching mathematics through problem solving is a rather new conception, it has not been the subject of much research.
In "teaching through problem solving," on the other hand, the goal is for students to learn precisely that mathematical idea that the curriculum calls for them to learn next. A "teaching through problem solving" lesson would begin with the teacher setting up the context and introducing the problem. Students then work on the problem for ...
1999). However, teaching mathematics through problem solving is a relatively new idea in the. history of problem solving in the mathem atics cu rriculum (Lester, 1994). In fact, because teaching ...
Problem Solving. What Is It? Teaching strategies for solving word problems is essential for students with mathematics difficulties. In order to create and solve problems from real-world data, students need to develop a set of skills and strategies for solving a range of problems (VDOE, 2020). Strategies for teaching problem solving include: 1.
Mathematics is solving problems," said Bethany Rittle-Johnson, a professor of psychology and human development at Peabody College in Vanderbilt University, who studies math instruction.
Effective teaching of mathematics establishes clear goals for the mathematics that students are learning, situates goals within learning progressions, and uses the goals to guide instructional decisions. Implement tasks that promote reasoning and problem solving. Effective teaching of mathematics
We use math to teach problem solving because it is the most fundamental logical discipline. Not only is it the foundation upon which sciences are built, it is the clearest way to learn and understand how to develop a rigorous logical argument. ... Problem solving is crucial in mathematics education because it transcends mathematics. By ...
Three examples of a problem solving heuristic are presented in Table 1. The first belongs to John Dewey, who explicated a method of problem solving in How We Think (1933). The second is George Polya's, whose method is mostly associated with problem solving in mathematics. The last is a more contemporary version
Make students articulate their problem solving process. In a one-on-one tutoring session, ask the student to work his/her problem out loud. This slows down the thinking process, making it more accurate and allowing you to access understanding. When working with larger groups you can ask students to provide a written "two-column solution.".
The site is always growing and changing. If you want to know when new material arrives, be sure to sign up to receive notifications of new content and resources. Come learn with us! Welcome to Teaching Is Problem Solving â€" a new site dedicated to sharing ideas about teaching with a focus on mathematics.
210 Journal on Mathematics Education, Volume 11, No. 2, May 2020, pp. 209-222 students can develop new knowledge, solve problems that occur, apply and use various strategies, and also reflect and monitor the problem-solving process. The problem-solving process requires implementing a certain strategy, which may lead the problem
When I first started teaching math over 25 years ago, it was very common to teach "keywords" to help students determine the operation to use when solving a word problem. For example, if you see the word "total" in the problem, you always add. ... Another common strategy for teaching problem-solving is the use of acrostics that students ...
Robert C. Schoen, Ph.D., is an associate professor of mathematics education in the School of Teacher Education at Florida State University. He is also the Associate Director of LSI's Florida Center for Research in Science, Technology, Engineering, and Mathematics (FCR-STEM) and the founder and director of Teaching is Problem Solving.His research involves mathematical cognition, the ...
Connect the Process of Problem Solving with the Content of the Common Core Mathematics educators have long worked to help students to develop problem-solving skills. More recently, they have sought to provide students with the knowledge in the Common Core State Standards (CCSS). This volume is the third in a series from NCTM that equips classroom teachers with targeted, highly effective ...
TERRE HAUTE, Ind. (WISH) — The Rose-Hulman Institute of Technology is once again offering free math and science tutoring help for K-12 students. This is the 33rd year for the AskRose Program ...
Traditional mathematics (sometimes classical math education) was the predominant method of mathematics education in the United States in the early-to-mid 20th century. This contrasts with non-traditional approaches to math education. [1] Traditional mathematics education has been challenged by several reform movements over the last several decades, notably new math, a now largely abandoned and ...
Connect the Process of Problem Solving with the Content of the Common Core Mathematics educators have long worked to help students to develop problem-solving skills. More recently, they have sought to provide students with the knowledge in the Common Core State Standards (CCSS). This volume is the second in a series from NCTM that equips classroom teachers with targeted, highly effective ...
Join our 24-Hour Non-Stop Doubt Solving Session for Class 11 Math, where confusion meets clarity! Hosted by SOE Bangla, this marathon is your chance to tackl...
Problem-solving amongst peers is an important life skill, but is often challenging for our students. Like any other skill, problem solving requires practice in order to get better at it. This social story helps students to develop healthy boundaries and relationships with their peers, and to navigate how to problem-solve and engage in ...