• Key Differences

Know the Differences & Comparisons

Difference Between Exploratory and Descriptive Research

exploratory vs descriptive research

The research design is defined as a framework for carrying out research activities in different fields of study. The research design is classified into two important categories i.e. exploratory and conclusive research. Conclusive research is further subdivided into descriptive and casual research. The people often juxtapose exploratory research and descriptive research, but the fact is that they are different.

Take a read of this article to understand the differences between exploratory and descriptive research.

Content: Exploratory Research Vs Descriptive Research

Comparison chart.

Basis for ComparisonExploratory ResearchDescriptive Research
MeaningExplorartory research means a research conducted for formulating a problem for more clear investigation.Descriptive research is a research that explore and explain an individual, group or a situation.
ObjectiveDiscovery of ideas and thoughts.Describe characteristics and functions.
Overall DesignFlexibleRigid
Research processUnstructuredStructured
SamplingNon-probability samplingProbability sampling
Statistical DesignNo pre-planned design for analysis.Pre-planned design for analysis.

Definition of Exploratory Research

As the name implies, the primary objective of exploratory research is to explore a problem to provide insights into and comprehension for more precise investigation. It focuses on the discovery of ideas and thoughts. The exploratory research design is suitable for studies which are flexible enough to provide an opportunity for considering all the aspects of the problem.

At this point, the required information is loosely defined, and the research process is flexible and unstructured. It is used in the situation when you must define the problem correctly, identify alternative courses of actions, develop a hypothesis, gain additional insights before the development of an approach, set priorities for further examination. The following methods are used for conducting exploratory research

  • Survey of concerning literature
  • Experience survey
  • Analysis of insights stimulating

Definition of Descriptive Research

By the term descriptive research, we mean a type of conclusive research study which is concerned with describing the characteristics of a particular individual or group. It includes research related to specific predictions, features or functions of person or group, the narration of facts, etc.

The descriptive research aims at obtaining complete and accurate information for the study, the method adopted must be carefully planned. The researcher should precisely define what he wants to measure? How does he want to measure? He should clearly define the population under study. It uses methods like quantitative analysis of secondary data, surveys, panels, observations, interviews, questionnaires, etc.

Descriptive Research concentrates on formulating the research objective, designing methods for the collection of data, selection of the sample, data collection, processing, and analysis, reporting the results.

Key Differences Between Exploratory and Descriptive Research

The difference between exploratory and descriptive research can be drawn clearly on the following grounds:

  • Research conducted for formulating a problem for more clear investigation is called exploratory research. Research that explore and explains an individual, group or a situation, is called descriptive research.
  • The exploratory research aims at the discovery of ideas and thoughts whereas the primary purpose of descriptive research is to describe the characteristics and functions.
  • The overall design of the exploratory research should be flexible enough so that it provides an opportunity to consider various aspects of the problem. On the contrary, in descriptive research, the overall design should be rigid which protects against bias and also maximise reliability.
  • The research process is unstructured in exploratory research. However, it is structured in the case of descriptive research.
  • Non-probability sampling i.e. judgment or purposive sampling design is used in exploratory research. As opposed to descriptive research where probability (random) sampling design is used.
  • When it comes to statistical design, exploratory research has no pre-planned design for analysis. Unlike, descriptive research that has the pre-planned design for analysis.

Therefore exploratory research results in insights or hypothesis, regardless of the method adopted, the most important thing is that it should remain flexible so that all the facets of the problem can be studied, as and when they arise. Conversely, descriptive research is a comparative design which is prepared according to the study and resources available. Such study minimises bias and maximises reliability.

You Might Also Like:

exploratory vs explanatory vs descriptive research

adrian says

November 16, 2017 at 6:22 pm

thank you so much for this incredible idea!

privanus simon says

June 20, 2018 at 11:42 am

The material you sent have been so useful in my study,Keep it up To me as as a Masters scholar I appriciate

Prasanna says

December 9, 2018 at 12:48 am

Overall website is superb,well explained.thanks a lot

ALBERT KOPES says

May 8, 2019 at 8:26 am

Thank you so much for your brilliant ideas. I really appreciated your hard work by putting your knowledge.. THANKS

Abinet A. Wanore says

October 11, 2019 at 10:11 pm

Thankyou so much. It is so helpful

Mkhulisi says

August 6, 2020 at 5:21 pm

this content has been very useful to me

Abdul Wahid Nuristani says

March 15, 2021 at 4:49 pm

great note.

Tina Sales says

January 25, 2022 at 9:02 pm

Thank you very much All information herein are very helpful for my current undertakings.

Sandile says

February 12, 2022 at 1:42 pm

I would like to reference your work, kindly assist

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Descriptive Research vs. Exploratory Research

What's the difference.

Descriptive research and exploratory research are two different approaches used in the field of research. Descriptive research aims to provide a detailed and accurate description of a particular phenomenon or situation. It focuses on collecting and analyzing data to answer specific research questions and provide a comprehensive understanding of the subject. On the other hand, exploratory research is conducted when there is limited existing knowledge or understanding of a topic. It aims to explore and gain insights into a subject, often through qualitative methods such as interviews or focus groups. Exploratory research is more flexible and open-ended, allowing researchers to generate hypotheses and identify potential areas for further investigation. While descriptive research provides a detailed account of a phenomenon, exploratory research helps in generating new ideas and theories.

AttributeDescriptive ResearchExploratory Research
ObjectiveDescribes and analyzes existing phenomena or relationshipsExplores new phenomena or relationships
FocusProvides a detailed and comprehensive view of a specific topicSeeks to gain initial insights and understanding of a broad topic
Data CollectionPrimarily relies on structured methods and standardized instrumentsUses flexible methods such as interviews, observations, or focus groups
Sample SizeUsually larger sample sizes to ensure representativenessOften smaller sample sizes due to the exploratory nature
Data AnalysisEmphasizes statistical analysis and summarization of dataFocuses on identifying patterns, themes, and emerging trends
TimeframeTypically conducted over a longer period of timeCan be completed in a shorter timeframe
HypothesisOften tests specific hypotheses or research questionsDoes not necessarily start with specific hypotheses

Further Detail

Introduction.

Research is a fundamental aspect of any scientific or academic endeavor. It allows us to gain knowledge, understand phenomena, and make informed decisions. Descriptive research and exploratory research are two common approaches used in various fields to investigate and analyze different aspects of a subject. While both methods aim to gather information, they differ in their objectives, methodologies, and applications. In this article, we will explore the attributes of descriptive research and exploratory research, highlighting their similarities and differences.

Descriptive Research

Descriptive research is a systematic investigation that aims to describe and document the characteristics, behaviors, or patterns of a specific population or phenomenon. It focuses on providing an accurate and detailed account of the subject under study. This type of research is often used to answer questions related to who, what, when, where, and how. Descriptive research relies on observation, surveys, interviews, and existing data to collect information.

One of the key attributes of descriptive research is its emphasis on objectivity and precision. Researchers strive to minimize bias and ensure that the collected data accurately represents the subject being studied. This is achieved through careful design, standardized data collection methods, and statistical analysis. Descriptive research is particularly useful when investigating large populations or when a comprehensive understanding of a phenomenon is required.

Another important aspect of descriptive research is its ability to provide a snapshot of a particular situation or group at a specific point in time. By collecting data from a representative sample, researchers can draw conclusions about the larger population. Descriptive research can also be used to identify trends, patterns, or relationships between variables. It serves as a foundation for further research and hypothesis testing.

Exploratory Research

Exploratory research, as the name suggests, is conducted to explore and gain insights into a subject or problem that is not well understood or lacks sufficient previous research. It aims to generate ideas, formulate hypotheses, and identify potential areas for further investigation. Exploratory research is often used when the topic is relatively new, complex, or lacks a clear theoretical framework.

Unlike descriptive research, which focuses on providing a detailed account, exploratory research is more flexible and open-ended. It allows researchers to gather preliminary information, explore different perspectives, and develop a deeper understanding of the subject. Exploratory research methods include literature reviews, focus groups, case studies, and pilot studies.

One of the key attributes of exploratory research is its qualitative nature. It often involves collecting and analyzing non-numerical data, such as interviews, observations, or textual analysis. This allows researchers to capture rich and nuanced information, uncover hidden patterns, and gain a holistic view of the subject. Exploratory research is particularly useful when investigating complex social phenomena, exploring new markets, or understanding human behavior.

Similarities

While descriptive research and exploratory research have distinct objectives and methodologies, they also share some similarities. Both approaches involve systematic data collection and analysis. They rely on empirical evidence to draw conclusions and make informed decisions. Additionally, both types of research contribute to the advancement of knowledge in their respective fields.

Furthermore, descriptive research and exploratory research can be used in combination. Exploratory research can help identify variables and generate hypotheses, which can then be tested using descriptive research methods. This iterative process allows researchers to refine their understanding and develop more comprehensive insights.

Differences

While there are similarities between descriptive research and exploratory research, there are also notable differences in their objectives, methodologies, and applications. Descriptive research aims to provide a detailed and accurate account of a subject, while exploratory research focuses on exploring and gaining insights into a relatively unknown or complex topic.

Descriptive research relies heavily on quantitative data collection methods, such as surveys or experiments, to gather information. It emphasizes objectivity, precision, and statistical analysis. In contrast, exploratory research often involves qualitative data collection methods, such as interviews or observations, to capture rich and contextual information. It allows for more flexibility and open-ended exploration.

Another difference lies in the scope and generalizability of the findings. Descriptive research aims to provide a representative snapshot of a larger population, allowing for generalizations and predictions. Exploratory research, on the other hand, focuses on generating insights and hypotheses that can be further tested and refined. Its findings are often more specific and context-dependent.

Descriptive research and exploratory research are two distinct approaches used in various fields to investigate and analyze different aspects of a subject. Descriptive research provides a detailed and accurate account of a specific population or phenomenon, while exploratory research aims to explore and gain insights into relatively unknown or complex topics. Both methods contribute to the advancement of knowledge and can be used in combination to refine understanding and develop comprehensive insights. Understanding the attributes of descriptive research and exploratory research is crucial for researchers to choose the most appropriate approach for their specific research objectives.

Comparisons may contain inaccurate information about people, places, or facts. Please report any issues.

Logo for British Columbia/Yukon Open Authoring Platform

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Developing a Research Question

16 Exploration, Description, Explanation

As you can see, there is much to think about and decisions to be made as you begin to think about your research question and your research project.  Something else you will need to consider in the early stages is whether your research will be exploratory, descriptive, or explanatory. Each of these types of research has a different purpose, consequently, how you design your research project will be determined in part by this decision. In the following paragraphs we will look at these three types of research.

Exploratory research

Researchers conducting exploratory research are typically at the early stages of examining their topics. These sorts of projects are usually conducted when a researcher wants to test the feasibility of conducting a more extensive study; he or she wants to figure out the lay of the land, with respect to the particular topic. Perhaps very little prior research has been conducted on this subject. If this is the case, a researcher may wish to do some exploratory work to learn what method to use in collecting data, how best to approach research subjects, or even what sorts of questions are reasonable to ask. A researcher wanting to simply satisfy his or her own curiosity about a topic could also conduct exploratory research. Conducting exploratory research on a topic is often a necessary first step, both to satisfy researcher curiosity about the subject and to better understand the phenomenon and the research participants in order to design a larger, subsequent study. See Table 3.1 for examples.

Descriptive research

Sometimes the goal of research is to describe or define a particular phenomenon. In this case, descriptive research would be an appropriate strategy. A descriptive may, for example, aim to describe a pattern.  For example, researchers often collect information to describe something for the benefit of the general public.  Market researchers rely on descriptive research to tell them what consumers think of their products. In fact, descriptive research has many useful applications, and you probably rely on findings from descriptive research without even being aware that that is what you are doing. See Table 3.1 for examples.

Explanatory research

The third type of research, explanatory research , seeks to answer “why” questions. In this case, the researcher is trying to identify the causes and effects of whatever phenomenon is under studying. An explanatory study of college students’ addictions to their electronic gadgets, for example, might aim to understand why students become addicted. Does it have anything to do with their family histories? Does it have anything to do with their other extracurricular hobbies and activities?  Does it have anything to do with whom they spend their time? An explanatory study could answer these kinds of questions. See Table 3.1 for examples.

Table 3.1  Exploratory, descriptive and explanatory research differences (Adapted from Adjei, n.d.)
Exploratory Research Descriptive Research Explanatory Research
Degree of Problem Definition Key variables not defined Key variables not defined Key variables not defined
Researchable issue example “The quality of service is declining and we don’t know why.” “What have been the trends in organizational downsizing over the past ten years?” “Which of two training programs is more effective for reducing labour turnover?”
Researchable issue example “Would people be interested in our new product idea?” “Did last year’s product recall have an impact on our company’s share price?” “Can I predict the value of energy stocks if I know the current dividends and growth rates of dividends?”
Researchable issue example “How important is business process reengineering as a strategy?” “Has the average merger rate for financial institutions increased in the past decade?” “Do buyers prefer our product in a new package?”

Text Attributions

  • This chapter has been adapted from Chapter 5.1 in Principles of Sociological Inquiry , which was adapted by the Saylor Academy without attribution to the original authors or publisher, as requested by the licensor. © Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License .

An Introduction to Research Methods in Sociology Copyright © 2019 by Valerie A. Sheppard is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Logo for Open Library Publishing Platform

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

As you can see, there is much to think about and many decisions to be made as you begin to define your research question and your research project. Something else you will need to consider in the early stages is whether your research will be exploratory, descriptive, or explanatory. Each of these types of research has a different aim or purpose, consequently, how you design your research project will be determined in part by this decision. In the following paragraphs we will look at these three types of research.

Exploratory research

Researchers conducting exploratory research are typically at the early stages of examining their topics. These sorts of projects are usually conducted when a researcher wants to test the feasibility of conducting a more extensive study; he or she wants to figure out the lay of the land with respect to the particular topic. Perhaps very little prior research has been conducted on this subject. If this is the case, a researcher may wish to do some exploratory work to learn what method to use in collecting data, how best to approach research participants, or even what sorts of questions are reasonable to ask. A researcher wanting to simply satisfy his or her own curiosity about a topic could also conduct exploratory research. Conducting exploratory research on a topic is often a necessary first step, both to satisfy researcher curiosity about the subject and to better understand the phenomenon and the research participants in order to design a larger, subsequent study. See Table 2.1 for examples.

Descriptive research

Sometimes the goal of research is to describe or define a particular phenomenon. In this case, descriptive research would be an appropriate strategy. A descriptive may, for example, aim to describe a pattern. For example, researchers often collect information to describe something for the benefit of the general public. Market researchers rely on descriptive research to tell them what consumers think of their products. In fact, descriptive research has many useful applications, and you probably rely on findings from descriptive research without even being aware that that is what you are doing. See Table 3.1 for examples.

Explanatory research

The third type of research, explanatory research, seeks to answer “why” questions. In this case, the researcher is trying to identify the causes and effects of whatever phenomenon is being studied. An explanatory study of college students’ addictions to their electronic gadgets, for example, might aim to understand why students become addicted. Does it have anything to do with their family histories? Does it have anything to do with their other extracurricular hobbies and activities? Does it have anything to do with the people with whom they spend their time? An explanatory study could answer these kinds of questions. See Table 3.1 for examples.

Table 3.1 Exploratory, descriptive and explanatory research differences (Adapted from Adjei, n.d.).

Degree of Problem

Definition

Key variables not define Key variables not define Key variables not define
“The quality of service is declining and we don’t know why.” “What have been the trends in organizational downsizing over the past ten years?” “Which of two training programs is more effective for reducing labour turnover?
“Would people be interested in our new product idea? “Did last year’s product recall have an impact on our company’s share price?” “Can I predict the value of energy stocks if I know the current dividends and growth rates of dividends?”
“How important is business process reengineering as a strategy? “Has the average merger rate for financial institutions increased in the past decade?” “Do buyers prefer our product in a new package?”

Research Methods, Data Collection and Ethics Copyright © 2020 by Valerie Sheppard is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Logo for The University of Regina OEP Program

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

12 4.1 Types of research

Learning objectives.

  • Differentiate between exploratory, descriptive, and explanatory research

A recent news story about college students’ addictions to electronic gadgets (Lisk, 2011) describes findings from some research by Professor Susan Moeller and colleagues from the University of Maryland . The story raises a number of interesting questions. Just what sorts of gadgets are students addicted to? How do these addictions work? Why do they exist, and who is most likely to experience them?

Social science research is great for answering just these sorts of questions. But in order to answer our questions well, we must take care in designing our research projects. In this chapter, we’ll consider what aspects of a research project should be considered at the beginning, including specifying the goals of the research, the components that are common across most research projects, and a few other considerations.

exploratory vs explanatory vs descriptive research

One of the first things to think about when designing a research project is what you hope to accomplish, in very general terms, by conducting the research. What do you hope to be able to say about your topic? Do you hope to gain a deep understanding of whatever phenomenon it is that you’re studying, or would you rather have a broad, but perhaps less deep, understanding? Do you want your research to be used by policymakers or others to shape social life, or is this project more about exploring your curiosities? Your answers to each of these questions will shape your research design.

Exploration, description, and explanation

You’ll need to decide in the beginning phases whether your research will be exploratory, descriptive, or explanatory. Each has a different purpose, so how you design your research project will be determined in part by this decision.

Researchers conducting exploratory research are typically at the early stages of examining their topics. These sorts of projects are usually conducted when a researcher wants to test the feasibility of conducting a more extensive study and to figure out the “lay of the land” with respect to the particular topic. Perhaps very little prior research has been conducted on this subject. If this is the case, a researcher may wish to do some exploratory work to learn what method to use in collecting data, how best to approach research subjects, or even what sorts of questions are reasonable to ask. A researcher wanting to simply satisfy her own curiosity about a topic could also conduct exploratory research. In the case of the study of college students’ addictions to their electronic gadgets, a researcher conducting exploratory research on this topic may simply wish to learn more about students’ use of these gadgets. Because these addictions seemed to be a relatively new phenomenon, an exploratory study of the topic made sense as an initial first step toward understanding it.

It is important to note that exploratory designs do not make sense for topic areas with a lot of existing research. For example, the question “What are common interventions for parents who neglect their children?” would not make much sense as a research question. One could simply look at journal articles and textbooks to see what interventions are commonly used with this population. Exploratory questions are best suited to topics that have not been studied. Students may sometimes say there is not much literature on their chosen topic, when there is in fact a large body of literature on that topic. However, that said, there are a few students each semester who pick a topic for which there is little existing research. Perhaps, if you were looking at child neglect interventions for parents who identify as transgender or parents who are refugees from the Syrian civil war, less would be known about child neglect for those specific populations. In that case, an exploratory design would make sense as there is less literature to guide your study.

Descriptive research is used to describe or define a particular phenomenon. For example, a social work researcher may want to understand what it means to be a first-generation college student or a resident in a psychiatric group home. In this case, descriptive research would be an appropriate strategy. A descriptive study of college students’ addictions to their electronic gadgets, for example, might aim to describe patterns in how many hours students use gadgets or which sorts of gadgets students tend to use most regularly.

Researchers at the Princeton Review conduct descriptive research each year when they set out to provide students and their parents with information about colleges and universities around the United States. They describe the social life at a school, the cost of admission, and student-to-faculty ratios (to name just a few of the categories reported). Although students and parents may be able to obtain much of this information on their own, having access to the data gathered by a team of researchers is much more convenient and less time consuming.

exploratory vs explanatory vs descriptive research

Social workers often rely on descriptive research to tell them about their service area. Keeping track of the number of children receiving foster care services, their demographic makeup (e.g., race, gender), and length of time in care are excellent examples of descriptive research. On a more macro-level, the Centers for Disease Control provides a remarkable amount of descriptive research on mental and physical health conditions. In fact, descriptive research has many useful applications, and you probably rely on findings from descriptive research without even being aware that that is what you are doing.

Finally, social work researchers often aim to explain why particular phenomena work in the way that they do. Research that answers “why” questions is referred to as explanatory research. In this case, the researcher is trying to identify the causes and effects of whatever phenomenon she is studying. An explanatory study of college students’ addictions to their electronic gadgets might aim to understand why students become addicted. Does it have anything to do with their family histories? With their other extracurricular hobbies and activities? With whom they spend their time? An explanatory study could answer these kinds of questions.

There are numerous examples of explanatory social scientific investigations. For example, in one study, Dominique Simons and Sandy Wurtele (2010) sought to discover whether receiving corporal punishment from parents led children to turn to violence in solving their interpersonal conflicts with other children. In their study of 102 families with children between the ages of 3 and 7, the researchers found that experiencing frequent spanking did, in fact, result in children being more likely to accept aggressive problem-solving techniques. Another example of explanatory research can be seen in Robert Faris and Diane Felmlee’s (2011) research on the connections between popularity and bullying. From their study of 8th, 9th, and 10th graders in 19 North Carolina schools, they found that aggression increased as adolescents’ popularity increased. (This pattern was found until adolescents reached the top 2% in the popularity ranks. After that, aggression declines).

The choice between descriptive, exploratory, and explanatory research should be made with your research question in mind. What does your question ask? Are you trying to learn the basics about a new area, establish a clear “why” relationship, or define or describe an activity or concept? In the next section, we will explore how each type of research is associated with different methods, paradigms, and forms of logic.

Key Takeaways

  • Exploratory research is usually conducted when a researcher has just begun an investigation and wishes to understand the topic generally.
  • Descriptive research is research that aims to describe or define the topic at hand.
  • Explanatory research is research that aims to explain why particular phenomena work in the way that they do.
  • Descriptive research- research that describes or define a particular phenomenon
  • Explanatory research- explains why particular phenomena work in the way that they do, answers “why” questions
  • Exploratory research- conducted during the early stages of a project, usually when a researcher wants to test the feasibility of conducting a more extensive study

Image attributions

Pencil by kaboompics CC-0

Two men and one woman in a photo by Rawpixel.com CC-0

Foundations of Social Work Research Copyright © 2020 by Rebecca L. Mauldin is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

  • Privacy Policy

Research Method

Home » Explanatory Research – Types, Methods, Guide

Explanatory Research – Types, Methods, Guide

Table of Contents

Explanatory Research

Explanatory Research

Definition :

Explanatory research is a type of research that aims to uncover the underlying causes and relationships between different variables. It seeks to explain why a particular phenomenon occurs and how it relates to other factors.

This type of research is typically used to test hypotheses or theories and to establish cause-and-effect relationships. Explanatory research often involves collecting data through surveys , experiments , or other empirical methods, and then analyzing that data to identify patterns and correlations. The results of explanatory research can provide a better understanding of the factors that contribute to a particular phenomenon and can help inform future research or policy decisions.

Types of Explanatory Research

There are several types of explanatory research, each with its own approach and focus. Some common types include:

Experimental Research

This involves manipulating one or more variables to observe the effect on other variables. It allows researchers to establish a cause-and-effect relationship between variables and is often used in natural and social sciences.

Quasi-experimental Research

This type of research is similar to experimental research but lacks full control over the variables. It is often used in situations where it is difficult or impossible to manipulate certain variables.

Correlational Research

This type of research aims to identify relationships between variables without manipulating them. It involves measuring and analyzing the strength and direction of the relationship between variables.

Case study Research

This involves an in-depth investigation of a specific case or situation. It is often used in social sciences and allows researchers to explore complex phenomena and contexts.

Historical Research

This involves the systematic study of past events and situations to understand their causes and effects. It is often used in fields such as history and sociology.

Survey Research

This involves collecting data from a sample of individuals through structured questionnaires or interviews. It allows researchers to investigate attitudes, behaviors, and opinions.

Explanatory Research Methods

There are several methods that can be used in explanatory research, depending on the research question and the type of data being collected. Some common methods include:

Experiments

In experimental research, researchers manipulate one or more variables to observe their effect on other variables. This allows them to establish a cause-and-effect relationship between the variables.

Surveys are used to collect data from a sample of individuals through structured questionnaires or interviews. This method can be used to investigate attitudes, behaviors, and opinions.

Correlational studies

This method aims to identify relationships between variables without manipulating them. It involves measuring and analyzing the strength and direction of the relationship between variables.

Case studies

Case studies involve an in-depth investigation of a specific case or situation. This method is often used in social sciences and allows researchers to explore complex phenomena and contexts.

Secondary Data Analysis

This method involves analyzing data that has already been collected by other researchers or organizations. It can be useful when primary data collection is not feasible or when additional data is needed to support research findings.

Data Analysis Methods

Explanatory research data analysis methods are used to explore the relationships between variables and to explain how they interact with each other. Here are some common data analysis methods used in explanatory research:

Correlation Analysis

Correlation analysis is used to identify the strength and direction of the relationship between two or more variables. This method is particularly useful when exploring the relationship between quantitative variables.

Regression Analysis

Regression analysis is used to identify the relationship between a dependent variable and one or more independent variables. This method is particularly useful when exploring the relationship between a dependent variable and several predictor variables.

Path Analysis

Path analysis is a method used to examine the direct and indirect relationships between variables. It is particularly useful when exploring complex relationships between variables.

Structural Equation Modeling (SEM)

SEM is a statistical method used to test and validate theoretical models of the relationships between variables. It is particularly useful when exploring complex models with multiple variables and relationships.

Factor Analysis

Factor analysis is used to identify underlying factors that contribute to the variation in a set of variables. This method is particularly useful when exploring relationships between multiple variables.

Content Analysis

Content analysis is used to analyze qualitative data by identifying themes and patterns in text, images, or other forms of data. This method is particularly useful when exploring the meaning and context of data.

Applications of Explanatory Research

The applications of explanatory research include:

  • Social sciences: Explanatory research is commonly used in social sciences to investigate the causes and effects of social phenomena, such as the relationship between poverty and crime, or the impact of social policies on individuals or communities.
  • Marketing : Explanatory research can be used in marketing to understand the reasons behind consumer behavior, such as why certain products are preferred over others or why customers choose to purchase from certain brands.
  • Healthcare : Explanatory research can be used in healthcare to identify the factors that contribute to disease or illness, as well as the effectiveness of different treatments and interventions.
  • Education : Explanatory research can be used in education to investigate the causes of academic achievement or failure, as well as the factors that influence teaching and learning processes.
  • Business : Explanatory research can be used in business to understand the factors that contribute to the success or failure of different strategies, as well as the impact of external factors, such as economic or political changes, on business operations.
  • Public policy: Explanatory research can be used in public policy to evaluate the effectiveness of policies and programs, as well as to identify the factors that contribute to social problems or inequalities.

Explanatory Research Question

An explanatory research question is a type of research question that seeks to explain the relationship between two or more variables, and to identify the underlying causes of that relationship. The goal of explanatory research is to test hypotheses or theories about the relationship between variables, and to gain a deeper understanding of complex phenomena.

Examples of explanatory research questions include:

  • What is the relationship between sleep quality and academic performance among college students, and what factors contribute to this relationship?
  • How do environmental factors, such as temperature and humidity, affect the spread of infectious diseases?
  • What are the factors that contribute to the success or failure of small businesses in a particular industry, and how do these factors interact with each other?
  • How do different teaching strategies impact student engagement and learning outcomes in the classroom?
  • What is the relationship between social support and mental health outcomes among individuals with chronic illnesses, and how does this relationship vary across different populations?

Examples of Explanatory Research

Here are a few Real-Time Examples of explanatory research:

  • Exploring the factors influencing customer loyalty: A business might conduct explanatory research to determine which factors, such as product quality, customer service, or price, have the greatest impact on customer loyalty. This research could involve collecting data through surveys, interviews, or other means and analyzing it using methods such as correlation or regression analysis.
  • Understanding the causes of crime: Law enforcement agencies might conduct explanatory research to identify the factors that contribute to crime in a particular area. This research could involve collecting data on factors such as poverty, unemployment, drug use, and social inequality and analyzing it using methods such as regression analysis or structural equation modeling.
  • Investigating the effectiveness of a new medical treatment: Medical researchers might conduct explanatory research to determine whether a new medical treatment is effective and which variables, such as dosage or patient age, are associated with its effectiveness. This research could involve conducting clinical trials and analyzing data using methods such as path analysis or SEM.
  • Exploring the impact of social media on mental health : Researchers might conduct explanatory research to determine whether social media use has a positive or negative impact on mental health and which variables, such as frequency of use or type of social media, are associated with mental health outcomes. This research could involve collecting data through surveys or interviews and analyzing it using methods such as factor analysis or content analysis.

When to use Explanatory Research

Here are some situations where explanatory research might be appropriate:

  • When exploring a new or complex phenomenon: Explanatory research can be used to understand the mechanisms of a new or complex phenomenon and to identify the variables that are most strongly associated with it.
  • When testing a theoretical model: Explanatory research can be used to test a theoretical model of the relationships between variables and to validate or modify the model based on empirical data.
  • When identifying the causal relationships between variables: Explanatory research can be used to identify the causal relationships between variables and to determine which variables have the greatest impact on the outcome of interest.
  • When conducting program evaluation: Explanatory research can be used to evaluate the effectiveness of a program or intervention and to identify the factors that contribute to its success or failure.
  • When making informed decisions: Explanatory research can be used to provide a basis for informed decision-making in business, government, or other contexts by identifying the factors that contribute to a particular outcome.

How to Conduct Explanatory Research

Here are the steps to conduct explanatory research:

  • Identify the research problem: Clearly define the research question or problem you want to investigate. This should involve identifying the variables that you want to explore, and the potential relationships between them.
  • Conduct a literature review: Review existing research on the topic to gain a deeper understanding of the variables and relationships you plan to explore. This can help you develop a hypothesis or research questions to guide your study.
  • Develop a research design: Decide on the research design that best suits your study. This may involve collecting data through surveys, interviews, experiments, or observations.
  • Collect and analyze data: Collect data from your selected sample and analyze it using appropriate statistical methods to identify any significant relationships between variables.
  • Interpret findings: Interpret the results of your analysis in light of your research question or hypothesis. Identify any patterns or relationships between variables, and discuss the implications of your findings for the wider field of study.
  • Draw conclusions: Draw conclusions based on your analysis and identify any areas for further research. Make recommendations for future research or policy based on your findings.

Purpose of Explanatory Research

The purpose of explanatory research is to identify and explain the relationships between different variables, as well as to determine the causes of those relationships. This type of research is often used to test hypotheses or theories, and to explore complex phenomena that are not well understood.

Explanatory research can help to answer questions such as “why” and “how” by providing a deeper understanding of the underlying causes and mechanisms of a particular phenomenon. For example, explanatory research can be used to determine the factors that contribute to a particular health condition, or to identify the reasons why certain marketing strategies are more effective than others.

The main purpose of explanatory research is to gain a deeper understanding of a particular phenomenon, with the goal of developing more effective solutions or interventions to address the problem. By identifying the underlying causes and mechanisms of a phenomenon, explanatory research can help to inform decision-making, policy development, and best practices in a wide range of fields, including healthcare, social sciences, business, and education

Advantages of Explanatory Research

Here are some advantages of explanatory research:

  • Provides a deeper understanding: Explanatory research aims to uncover the underlying causes and mechanisms of a particular phenomenon, providing a deeper understanding of complex phenomena that is not possible with other research designs.
  • Test hypotheses or theories: Explanatory research can be used to test hypotheses or theories by identifying the relationships between variables and determining the causes of those relationships.
  • Provides insights for decision-making: Explanatory research can provide insights that can inform decision-making in a wide range of fields, from healthcare to business.
  • Can lead to the development of effective solutions: By identifying the underlying causes of a problem, explanatory research can help to develop more effective solutions or interventions to address the problem.
  • Can improve the validity of research: By identifying and controlling for potential confounding variables, explanatory research can improve the validity and reliability of research findings.
  • Can be used in combination with other research designs : Explanatory research can be used in combination with other research designs, such as exploratory or descriptive research, to provide a more comprehensive understanding of a phenomenon.

Limitations of Explanatory Research

Here are some limitations of explanatory research:

  • Limited generalizability: Explanatory research typically involves studying a specific sample, which can limit the generalizability of findings to other populations or settings.
  • Time-consuming and resource-intensive: Explanatory research can be time-consuming and resource-intensive, particularly if it involves collecting and analyzing large amounts of data.
  • Limited scope: Explanatory research is typically focused on a narrow research question or hypothesis, which can limit its scope in comparison to other research designs such as exploratory or descriptive research.
  • Limited control over variables: Explanatory research can be limited by the researcher’s ability to control for all possible variables that may influence the relationship between variables of interest.
  • Potential for bias: Explanatory research can be subject to various types of bias, such as selection bias, measurement bias, and recall bias, which can influence the validity of research findings.
  • Ethical considerations: Explanatory research may involve the use of invasive or risky procedures, which can raise ethical concerns and require careful consideration of the potential risks and benefits of the study.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Triangulation

Triangulation in Research – Types, Methods and...

Quasi-Experimental Design

Quasi-Experimental Research Design – Types...

Quantitative Research

Quantitative Research – Methods, Types and...

Basic Research

Basic Research – Types, Methods and Examples

Phenomenology

Phenomenology – Methods, Examples and Guide

Exploratory Research

Exploratory Research – Types, Methods and...

Instant insights, infinite possibilities

What is explanatory research?

Last updated

12 June 2023

Reviewed by

Miroslav Damyanov

Short on time? Get an AI generated summary of this article instead

The search for knowledge and understanding never stops in the field of research. Researchers are always finding new techniques to help analyze and make sense of the world. Explanatory research is one such technique. It provides a new perspective on various areas of study.

So, what exactly is explanatory research? This article will provide an in-depth overview of everything you need to know about explanatory research and its purpose. You’ll also get to know the different types of explanatory research and how they’re conducted.

Analyze explanatory research

Get a deeper understanding of your explanatory research when you analyze it in Dovetail

  • Explanatory research: definition

Explanatory research is a technique used to gain a deeper understanding of the underlying reasons for, causes of, and relationships behind a particular phenomenon that has yet to be extensively studied.

Researchers use this method to understand why and how a particular phenomenon occurs the way it does. Since there is limited information regarding the phenomenon being studied, it’s up to the researcher to develop fresh ideas and collect more data.

The results and conclusions drawn from explanatory research give researchers a deeper understanding and help predict future occurrences.

  • Descriptive research vs. explanatory research

Descriptive research aims to define or summarize an event or population without explaining why it exists. It focuses on acquiring and conveying facts.

On the other hand, explanatory research aims to explain why a phenomenon occurs by working to understand the causes and correlations between variables.

Unlike descriptive research, which focuses on providing descriptions and characteristics of a given phenomenon, explanatory research goes a step further to explain different mechanisms and the reasons behind them. Explanatory research is never concerned with producing new knowledge or solving problems. Instead, it aims to explain why and how something happens.

  • Exploratory research vs. explanatory research

Explanatory research explains why specific phenomena function as they do. Meanwhile, exploratory research examines and investigates an issue that is not clearly defined. Both methods are crucial for problem analysis.

Researchers use exploratory research at the outset to discover new ideas, concepts, and opportunities. Once exploratory research has identified a potential area of interest or problem, researchers employ explanatory research to delve further into the specific subject matter.

Researchers employ the explanatory research technique when they want to explain why and how something occurs in a certain way. Researchers who employ this approach usually have an outcome in mind, and carrying it out is their top priority.

  • When to use explanatory research

Explanatory research may be helpful in the following situations:

When testing a theoretical model: explanatory research can help researchers develop a theory. It can provide sufficient evidence to validate or refine existing theories based on the available data.

When establishing causality: this research method can determine the cause-and-effect relationships between study variables and determine which variable influences the predicted outcome most. Explanatory research explores all the factors that lead to a certain outcome or phenomenon.

When making informed decisions: the results and conclusions drawn from explanatory research can provide a basis for informed decision-making. It can be helpful in different industries and sectors. For example, entrepreneurs in the business sector can use explanatory research to implement informed marketing strategies to increase sales and generate more revenue.

When addressing research gaps: a research gap is an unresolved problem or unanswered question due to inadequate research in that space. Researchers can use explanatory research to gather information about a certain phenomenon and fill research gaps. It also enables researchers to answer previously unanswered questions and explain different mechanisms that haven’t yet been studied.

When conducting program evaluation: researchers can also use the technique to determine the effectiveness of a particular program and identify all the factors that are likely to contribute to its success or failure.

  • Types of explanatory research

Here are the different types of explanatory research:

Case study research: this method involves the in-depth analysis of a given individual, company, organization, or event. It allows researchers to study individuals or organizations that have faced the same situation. This way, they can determine what worked for them and what didn’t.

Experimental research: this involves manipulating independent variables and observing how they affect dependent variables. This method allows researchers to establish a cause-and-effect relationship between different variables.

Quasi-experimental research: this type of research is quite similar to experimental research, but it lacks complete control over variables. It’s best suited to situations where manipulating certain variables is difficult or impossible.

Correlational research: this involves identifying underlying relationships between two or more variables without manipulating them. It determines the strength and direction of the relationship between different variables.

Historical research: this method involves studying past events to gain a better understanding of their causes and effects. It’s mostly used in fields like history and sociology.

Survey research: this type of explanatory research involves collecting data using a set of structured questionnaires or interviews given to a representative sample of participants. It helps researchers gather information about individuals’ attitudes, opinions, and behaviors toward certain phenomena.

Observational research: this involves directly observing and recording people in their natural setting, like the home, the office, or a shop. By studying their actions, needs, and challenges, researchers can gain valuable insights into their behavior, preferences, and pain points. This results in explanatory conclusions.

  • How to conduct explanatory research

Take the following steps when conducting explanatory research:

Develop the research question

The first step is to familiarize yourself with the topic you’re interested in and clearly articulate your specific goals. This will help you define the research question you want to answer or the problem you want to solve. Doing this will guide your research and ensure you collect the right data.

Formulate a hypothesis

The next step is to formulate a hypothesis that will address your expectations. Some researchers find that literature material has already covered their topic in the past. If this is the case with you, you can use such material as the main foundation of your hypothesis. However, if it doesn’t exist, you must formulate a hypothesis based on your own instincts or literature material on closely related topics.

Select the research type

Choose an appropriate research type based on your research questions, available resources, and timeline. Consider the level of control you need over the variables.

Next, design and develop instruments such as surveys, interview guides, or observation guidelines to gather relevant data.

Collect the data

Collecting data involves implementing the research instruments and gathering information from a representative sample of your target audience. Ensure proper data collection protocol, ethical considerations , and appropriate documentation for the data you collect.

Analyze the data

Once you have collected the data you need for your research, you’ll need to organize, code, and interpret it.

Use appropriate analytical methods, such as statistical analysis or thematic coding , to uncover patterns, relationships, and explanations that address your research goals and questions. You may have to suggest or conduct further research based on the results to elaborate on certain areas.

Communicate the results

Finally, communicate your results to relevant stakeholders , such as team members, clients, or other involved partners. Present your insights clearly and concisely through reports, slides, or visualizations. Provide actionable recommendations and avenues for future research.

  • Examples of explanatory research

Here are some real-life examples of explanatory research:

Understanding what causes high crime rates in big cities

Law enforcement organizations use explanatory research to pinpoint what causes high crime rates in particular cities. They gather information about various influencing factors, such as gang involvement, drug misuse, family structures, and firearm availability.

They then use regression analysis to examine the data further to understand the factors contributing to the high crime rates.

Factors that influence students’ academic performance

Educators and stakeholders in the Department of Education use questionnaires and interviews to gather data on factors that affect academic performance. These factors include parental engagement, learning styles, motivation, teaching quality, and peer pressure.

The data is used to ascertain how these variables affect students’ academic performance.

Examining what causes economic disparity in certain areas

Researchers use correlational and experimental research approaches to gather information on variables like education levels, household income, and employment rates. They use the information to examine the causes of economic disparity in certain regions.

  • Advantages of explanatory research

Here are some of the benefits you can expect from explanatory research:

Deeper understanding : the technique helps fill research gaps in previous studies by explaining the reasons, causes, and relationships behind particular behaviors or phenomena.

Competitive edge: by understanding the underlying factors that drive customer satisfaction and behavior, companies can create more engaging products and desirable services.

Predictable capabilities: it helps researchers and teams make predictions regarding certain phenomena like user behavior or future iterations of product features.

Informed decision-making: explanatory research generates insights that can help individuals make informed decisions in various sectors.

  • Disadvantages of explanatory research

Explanatory research is a great approach for better understanding various phenomena, but it has some limitations.

It’s time-consuming: explanatory research can be a time-consuming process, requiring careful planning, data collection, analysis, and interpretation. The technique might extend your timeline.

It’s resource intensive: explanatory research often requires a significant allocation of resources, including financial, human, and technological. This could pose challenges for organizations with limited budgets or constraints.

You have limited control over real-world factors: this type of research often takes place in controlled environments. Researchers may find this limits their ability to capture real-world complexities and variables that influence a particular behavior or phenomenon.

Depth and breadth are difficult to balance : explanatory research mainly focuses on a narrow hypothesis, which can limit the scope of the research and prevent researchers from understanding a problem more broadly.

Should you be using a customer insights hub?

Do you want to discover previous research faster?

Do you share your research findings with others?

Do you analyze research data?

Start for free today, add your research, and get to key insights faster

Editor’s picks

Last updated: 18 April 2023

Last updated: 27 February 2023

Last updated: 22 August 2024

Last updated: 5 February 2023

Last updated: 16 April 2023

Last updated: 9 March 2023

Last updated: 30 April 2024

Last updated: 12 December 2023

Last updated: 11 March 2024

Last updated: 4 July 2024

Last updated: 6 March 2024

Last updated: 5 March 2024

Last updated: 13 May 2024

Latest articles

Related topics, .css-je19u9{-webkit-align-items:flex-end;-webkit-box-align:flex-end;-ms-flex-align:flex-end;align-items:flex-end;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:row;-ms-flex-direction:row;flex-direction:row;-webkit-box-flex-wrap:wrap;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;-webkit-box-pack:center;-ms-flex-pack:center;-webkit-justify-content:center;justify-content:center;row-gap:0;text-align:center;max-width:671px;}@media (max-width: 1079px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}}@media (max-width: 799px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}} decide what to .css-1kiodld{max-height:56px;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}@media (max-width: 1079px){.css-1kiodld{display:none;}} build next, decide what to build next, log in or sign up.

Get started for free

Frequently asked questions

What’s the difference between exploratory and explanatory research.

Exploratory research aims to explore the main aspects of an under-researched problem, while explanatory research aims to explain the causes and consequences of a well-defined problem.

Frequently asked questions: Methodology

Attrition refers to participants leaving a study. It always happens to some extent—for example, in randomized controlled trials for medical research.

Differential attrition occurs when attrition or dropout rates differ systematically between the intervention and the control group . As a result, the characteristics of the participants who drop out differ from the characteristics of those who stay in the study. Because of this, study results may be biased .

Action research is conducted in order to solve a particular issue immediately, while case studies are often conducted over a longer period of time and focus more on observing and analyzing a particular ongoing phenomenon.

Action research is focused on solving a problem or informing individual and community-based knowledge in a way that impacts teaching, learning, and other related processes. It is less focused on contributing theoretical input, instead producing actionable input.

Action research is particularly popular with educators as a form of systematic inquiry because it prioritizes reflection and bridges the gap between theory and practice. Educators are able to simultaneously investigate an issue as they solve it, and the method is very iterative and flexible.

A cycle of inquiry is another name for action research . It is usually visualized in a spiral shape following a series of steps, such as “planning → acting → observing → reflecting.”

To make quantitative observations , you need to use instruments that are capable of measuring the quantity you want to observe. For example, you might use a ruler to measure the length of an object or a thermometer to measure its temperature.

Criterion validity and construct validity are both types of measurement validity . In other words, they both show you how accurately a method measures something.

While construct validity is the degree to which a test or other measurement method measures what it claims to measure, criterion validity is the degree to which a test can predictively (in the future) or concurrently (in the present) measure something.

Construct validity is often considered the overarching type of measurement validity . You need to have face validity , content validity , and criterion validity in order to achieve construct validity.

Convergent validity and discriminant validity are both subtypes of construct validity . Together, they help you evaluate whether a test measures the concept it was designed to measure.

  • Convergent validity indicates whether a test that is designed to measure a particular construct correlates with other tests that assess the same or similar construct.
  • Discriminant validity indicates whether two tests that should not be highly related to each other are indeed not related. This type of validity is also called divergent validity .

You need to assess both in order to demonstrate construct validity. Neither one alone is sufficient for establishing construct validity.

  • Discriminant validity indicates whether two tests that should not be highly related to each other are indeed not related

Content validity shows you how accurately a test or other measurement method taps  into the various aspects of the specific construct you are researching.

In other words, it helps you answer the question: “does the test measure all aspects of the construct I want to measure?” If it does, then the test has high content validity.

The higher the content validity, the more accurate the measurement of the construct.

If the test fails to include parts of the construct, or irrelevant parts are included, the validity of the instrument is threatened, which brings your results into question.

Face validity and content validity are similar in that they both evaluate how suitable the content of a test is. The difference is that face validity is subjective, and assesses content at surface level.

When a test has strong face validity, anyone would agree that the test’s questions appear to measure what they are intended to measure.

For example, looking at a 4th grade math test consisting of problems in which students have to add and multiply, most people would agree that it has strong face validity (i.e., it looks like a math test).

On the other hand, content validity evaluates how well a test represents all the aspects of a topic. Assessing content validity is more systematic and relies on expert evaluation. of each question, analyzing whether each one covers the aspects that the test was designed to cover.

A 4th grade math test would have high content validity if it covered all the skills taught in that grade. Experts(in this case, math teachers), would have to evaluate the content validity by comparing the test to the learning objectives.

Snowball sampling is a non-probability sampling method . Unlike probability sampling (which involves some form of random selection ), the initial individuals selected to be studied are the ones who recruit new participants.

Because not every member of the target population has an equal chance of being recruited into the sample, selection in snowball sampling is non-random.

Snowball sampling is a non-probability sampling method , where there is not an equal chance for every member of the population to be included in the sample .

This means that you cannot use inferential statistics and make generalizations —often the goal of quantitative research . As such, a snowball sample is not representative of the target population and is usually a better fit for qualitative research .

Snowball sampling relies on the use of referrals. Here, the researcher recruits one or more initial participants, who then recruit the next ones.

Participants share similar characteristics and/or know each other. Because of this, not every member of the population has an equal chance of being included in the sample, giving rise to sampling bias .

Snowball sampling is best used in the following cases:

  • If there is no sampling frame available (e.g., people with a rare disease)
  • If the population of interest is hard to access or locate (e.g., people experiencing homelessness)
  • If the research focuses on a sensitive topic (e.g., extramarital affairs)

The reproducibility and replicability of a study can be ensured by writing a transparent, detailed method section and using clear, unambiguous language.

Reproducibility and replicability are related terms.

  • Reproducing research entails reanalyzing the existing data in the same manner.
  • Replicating (or repeating ) the research entails reconducting the entire analysis, including the collection of new data . 
  • A successful reproduction shows that the data analyses were conducted in a fair and honest manner.
  • A successful replication shows that the reliability of the results is high.

Stratified sampling and quota sampling both involve dividing the population into subgroups and selecting units from each subgroup. The purpose in both cases is to select a representative sample and/or to allow comparisons between subgroups.

The main difference is that in stratified sampling, you draw a random sample from each subgroup ( probability sampling ). In quota sampling you select a predetermined number or proportion of units, in a non-random manner ( non-probability sampling ).

Purposive and convenience sampling are both sampling methods that are typically used in qualitative data collection.

A convenience sample is drawn from a source that is conveniently accessible to the researcher. Convenience sampling does not distinguish characteristics among the participants. On the other hand, purposive sampling focuses on selecting participants possessing characteristics associated with the research study.

The findings of studies based on either convenience or purposive sampling can only be generalized to the (sub)population from which the sample is drawn, and not to the entire population.

Random sampling or probability sampling is based on random selection. This means that each unit has an equal chance (i.e., equal probability) of being included in the sample.

On the other hand, convenience sampling involves stopping people at random, which means that not everyone has an equal chance of being selected depending on the place, time, or day you are collecting your data.

Convenience sampling and quota sampling are both non-probability sampling methods. They both use non-random criteria like availability, geographical proximity, or expert knowledge to recruit study participants.

However, in convenience sampling, you continue to sample units or cases until you reach the required sample size.

In quota sampling, you first need to divide your population of interest into subgroups (strata) and estimate their proportions (quota) in the population. Then you can start your data collection, using convenience sampling to recruit participants, until the proportions in each subgroup coincide with the estimated proportions in the population.

A sampling frame is a list of every member in the entire population . It is important that the sampling frame is as complete as possible, so that your sample accurately reflects your population.

Stratified and cluster sampling may look similar, but bear in mind that groups created in cluster sampling are heterogeneous , so the individual characteristics in the cluster vary. In contrast, groups created in stratified sampling are homogeneous , as units share characteristics.

Relatedly, in cluster sampling you randomly select entire groups and include all units of each group in your sample. However, in stratified sampling, you select some units of all groups and include them in your sample. In this way, both methods can ensure that your sample is representative of the target population .

A systematic review is secondary research because it uses existing research. You don’t collect new data yourself.

The key difference between observational studies and experimental designs is that a well-done observational study does not influence the responses of participants, while experiments do have some sort of treatment condition applied to at least some participants by random assignment .

An observational study is a great choice for you if your research question is based purely on observations. If there are ethical, logistical, or practical concerns that prevent you from conducting a traditional experiment , an observational study may be a good choice. In an observational study, there is no interference or manipulation of the research subjects, as well as no control or treatment groups .

It’s often best to ask a variety of people to review your measurements. You can ask experts, such as other researchers, or laypeople, such as potential participants, to judge the face validity of tests.

While experts have a deep understanding of research methods , the people you’re studying can provide you with valuable insights you may have missed otherwise.

Face validity is important because it’s a simple first step to measuring the overall validity of a test or technique. It’s a relatively intuitive, quick, and easy way to start checking whether a new measure seems useful at first glance.

Good face validity means that anyone who reviews your measure says that it seems to be measuring what it’s supposed to. With poor face validity, someone reviewing your measure may be left confused about what you’re measuring and why you’re using this method.

Face validity is about whether a test appears to measure what it’s supposed to measure. This type of validity is concerned with whether a measure seems relevant and appropriate for what it’s assessing only on the surface.

Statistical analyses are often applied to test validity with data from your measures. You test convergent validity and discriminant validity with correlations to see if results from your test are positively or negatively related to those of other established tests.

You can also use regression analyses to assess whether your measure is actually predictive of outcomes that you expect it to predict theoretically. A regression analysis that supports your expectations strengthens your claim of construct validity .

When designing or evaluating a measure, construct validity helps you ensure you’re actually measuring the construct you’re interested in. If you don’t have construct validity, you may inadvertently measure unrelated or distinct constructs and lose precision in your research.

Construct validity is often considered the overarching type of measurement validity ,  because it covers all of the other types. You need to have face validity , content validity , and criterion validity to achieve construct validity.

Construct validity is about how well a test measures the concept it was designed to evaluate. It’s one of four types of measurement validity , which includes construct validity, face validity , and criterion validity.

There are two subtypes of construct validity.

  • Convergent validity : The extent to which your measure corresponds to measures of related constructs
  • Discriminant validity : The extent to which your measure is unrelated or negatively related to measures of distinct constructs

Naturalistic observation is a valuable tool because of its flexibility, external validity , and suitability for topics that can’t be studied in a lab setting.

The downsides of naturalistic observation include its lack of scientific control , ethical considerations , and potential for bias from observers and subjects.

Naturalistic observation is a qualitative research method where you record the behaviors of your research subjects in real world settings. You avoid interfering or influencing anything in a naturalistic observation.

You can think of naturalistic observation as “people watching” with a purpose.

A dependent variable is what changes as a result of the independent variable manipulation in experiments . It’s what you’re interested in measuring, and it “depends” on your independent variable.

In statistics, dependent variables are also called:

  • Response variables (they respond to a change in another variable)
  • Outcome variables (they represent the outcome you want to measure)
  • Left-hand-side variables (they appear on the left-hand side of a regression equation)

An independent variable is the variable you manipulate, control, or vary in an experimental study to explore its effects. It’s called “independent” because it’s not influenced by any other variables in the study.

Independent variables are also called:

  • Explanatory variables (they explain an event or outcome)
  • Predictor variables (they can be used to predict the value of a dependent variable)
  • Right-hand-side variables (they appear on the right-hand side of a regression equation).

As a rule of thumb, questions related to thoughts, beliefs, and feelings work well in focus groups. Take your time formulating strong questions, paying special attention to phrasing. Be careful to avoid leading questions , which can bias your responses.

Overall, your focus group questions should be:

  • Open-ended and flexible
  • Impossible to answer with “yes” or “no” (questions that start with “why” or “how” are often best)
  • Unambiguous, getting straight to the point while still stimulating discussion
  • Unbiased and neutral

A structured interview is a data collection method that relies on asking questions in a set order to collect data on a topic. They are often quantitative in nature. Structured interviews are best used when: 

  • You already have a very clear understanding of your topic. Perhaps significant research has already been conducted, or you have done some prior research yourself, but you already possess a baseline for designing strong structured questions.
  • You are constrained in terms of time or resources and need to analyze your data quickly and efficiently.
  • Your research question depends on strong parity between participants, with environmental conditions held constant.

More flexible interview options include semi-structured interviews , unstructured interviews , and focus groups .

Social desirability bias is the tendency for interview participants to give responses that will be viewed favorably by the interviewer or other participants. It occurs in all types of interviews and surveys , but is most common in semi-structured interviews , unstructured interviews , and focus groups .

Social desirability bias can be mitigated by ensuring participants feel at ease and comfortable sharing their views. Make sure to pay attention to your own body language and any physical or verbal cues, such as nodding or widening your eyes.

This type of bias can also occur in observations if the participants know they’re being observed. They might alter their behavior accordingly.

The interviewer effect is a type of bias that emerges when a characteristic of an interviewer (race, age, gender identity, etc.) influences the responses given by the interviewee.

There is a risk of an interviewer effect in all types of interviews , but it can be mitigated by writing really high-quality interview questions.

A semi-structured interview is a blend of structured and unstructured types of interviews. Semi-structured interviews are best used when:

  • You have prior interview experience. Spontaneous questions are deceptively challenging, and it’s easy to accidentally ask a leading question or make a participant uncomfortable.
  • Your research question is exploratory in nature. Participant answers can guide future research questions and help you develop a more robust knowledge base for future research.

An unstructured interview is the most flexible type of interview, but it is not always the best fit for your research topic.

Unstructured interviews are best used when:

  • You are an experienced interviewer and have a very strong background in your research topic, since it is challenging to ask spontaneous, colloquial questions.
  • Your research question is exploratory in nature. While you may have developed hypotheses, you are open to discovering new or shifting viewpoints through the interview process.
  • You are seeking descriptive data, and are ready to ask questions that will deepen and contextualize your initial thoughts and hypotheses.
  • Your research depends on forming connections with your participants and making them feel comfortable revealing deeper emotions, lived experiences, or thoughts.

The four most common types of interviews are:

  • Structured interviews : The questions are predetermined in both topic and order. 
  • Semi-structured interviews : A few questions are predetermined, but other questions aren’t planned.
  • Unstructured interviews : None of the questions are predetermined.
  • Focus group interviews : The questions are presented to a group instead of one individual.

Deductive reasoning is commonly used in scientific research, and it’s especially associated with quantitative research .

In research, you might have come across something called the hypothetico-deductive method . It’s the scientific method of testing hypotheses to check whether your predictions are substantiated by real-world data.

Deductive reasoning is a logical approach where you progress from general ideas to specific conclusions. It’s often contrasted with inductive reasoning , where you start with specific observations and form general conclusions.

Deductive reasoning is also called deductive logic.

There are many different types of inductive reasoning that people use formally or informally.

Here are a few common types:

  • Inductive generalization : You use observations about a sample to come to a conclusion about the population it came from.
  • Statistical generalization: You use specific numbers about samples to make statements about populations.
  • Causal reasoning: You make cause-and-effect links between different things.
  • Sign reasoning: You make a conclusion about a correlational relationship between different things.
  • Analogical reasoning: You make a conclusion about something based on its similarities to something else.

Inductive reasoning is a bottom-up approach, while deductive reasoning is top-down.

Inductive reasoning takes you from the specific to the general, while in deductive reasoning, you make inferences by going from general premises to specific conclusions.

In inductive research , you start by making observations or gathering data. Then, you take a broad scan of your data and search for patterns. Finally, you make general conclusions that you might incorporate into theories.

Inductive reasoning is a method of drawing conclusions by going from the specific to the general. It’s usually contrasted with deductive reasoning, where you proceed from general information to specific conclusions.

Inductive reasoning is also called inductive logic or bottom-up reasoning.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Triangulation can help:

  • Reduce research bias that comes from using a single method, theory, or investigator
  • Enhance validity by approaching the same topic with different tools
  • Establish credibility by giving you a complete picture of the research problem

But triangulation can also pose problems:

  • It’s time-consuming and labor-intensive, often involving an interdisciplinary team.
  • Your results may be inconsistent or even contradictory.

There are four main types of triangulation :

  • Data triangulation : Using data from different times, spaces, and people
  • Investigator triangulation : Involving multiple researchers in collecting or analyzing data
  • Theory triangulation : Using varying theoretical perspectives in your research
  • Methodological triangulation : Using different methodologies to approach the same topic

Many academic fields use peer review , largely to determine whether a manuscript is suitable for publication. Peer review enhances the credibility of the published manuscript.

However, peer review is also common in non-academic settings. The United Nations, the European Union, and many individual nations use peer review to evaluate grant applications. It is also widely used in medical and health-related fields as a teaching or quality-of-care measure. 

Peer assessment is often used in the classroom as a pedagogical tool. Both receiving feedback and providing it are thought to enhance the learning process, helping students think critically and collaboratively.

Peer review can stop obviously problematic, falsified, or otherwise untrustworthy research from being published. It also represents an excellent opportunity to get feedback from renowned experts in your field. It acts as a first defense, helping you ensure your argument is clear and that there are no gaps, vague terms, or unanswered questions for readers who weren’t involved in the research process.

Peer-reviewed articles are considered a highly credible source due to this stringent process they go through before publication.

In general, the peer review process follows the following steps: 

  • First, the author submits the manuscript to the editor.
  • Reject the manuscript and send it back to author, or 
  • Send it onward to the selected peer reviewer(s) 
  • Next, the peer review process occurs. The reviewer provides feedback, addressing any major or minor issues with the manuscript, and gives their advice regarding what edits should be made. 
  • Lastly, the edited manuscript is sent back to the author. They input the edits, and resubmit it to the editor for publication.

Exploratory research is often used when the issue you’re studying is new or when the data collection process is challenging for some reason.

You can use exploratory research if you have a general idea or a specific question that you want to study but there is no preexisting knowledge or paradigm with which to study it.

Exploratory research is a methodology approach that explores research questions that have not previously been studied in depth. It is often used when the issue you’re studying is new, or the data collection process is challenging in some way.

Explanatory research is used to investigate how or why a phenomenon occurs. Therefore, this type of research is often one of the first stages in the research process , serving as a jumping-off point for future research.

Explanatory research is a research method used to investigate how or why something occurs when only a small amount of information is available pertaining to that topic. It can help you increase your understanding of a given topic.

Clean data are valid, accurate, complete, consistent, unique, and uniform. Dirty data include inconsistencies and errors.

Dirty data can come from any part of the research process, including poor research design , inappropriate measurement materials, or flawed data entry.

Data cleaning takes place between data collection and data analyses. But you can use some methods even before collecting data.

For clean data, you should start by designing measures that collect valid data. Data validation at the time of data entry or collection helps you minimize the amount of data cleaning you’ll need to do.

After data collection, you can use data standardization and data transformation to clean your data. You’ll also deal with any missing values, outliers, and duplicate values.

Every dataset requires different techniques to clean dirty data , but you need to address these issues in a systematic way. You focus on finding and resolving data points that don’t agree or fit with the rest of your dataset.

These data might be missing values, outliers, duplicate values, incorrectly formatted, or irrelevant. You’ll start with screening and diagnosing your data. Then, you’ll often standardize and accept or remove data to make your dataset consistent and valid.

Data cleaning is necessary for valid and appropriate analyses. Dirty data contain inconsistencies or errors , but cleaning your data helps you minimize or resolve these.

Without data cleaning, you could end up with a Type I or II error in your conclusion. These types of erroneous conclusions can be practically significant with important consequences, because they lead to misplaced investments or missed opportunities.

Data cleaning involves spotting and resolving potential data inconsistencies or errors to improve your data quality. An error is any value (e.g., recorded weight) that doesn’t reflect the true value (e.g., actual weight) of something that’s being measured.

In this process, you review, analyze, detect, modify, or remove “dirty” data to make your dataset “clean.” Data cleaning is also called data cleansing or data scrubbing.

Research misconduct means making up or falsifying data, manipulating data analyses, or misrepresenting results in research reports. It’s a form of academic fraud.

These actions are committed intentionally and can have serious consequences; research misconduct is not a simple mistake or a point of disagreement but a serious ethical failure.

Anonymity means you don’t know who the participants are, while confidentiality means you know who they are but remove identifying information from your research report. Both are important ethical considerations .

You can only guarantee anonymity by not collecting any personally identifying information—for example, names, phone numbers, email addresses, IP addresses, physical characteristics, photos, or videos.

You can keep data confidential by using aggregate information in your research report, so that you only refer to groups of participants rather than individuals.

Research ethics matter for scientific integrity, human rights and dignity, and collaboration between science and society. These principles make sure that participation in studies is voluntary, informed, and safe.

Ethical considerations in research are a set of principles that guide your research designs and practices. These principles include voluntary participation, informed consent, anonymity, confidentiality, potential for harm, and results communication.

Scientists and researchers must always adhere to a certain code of conduct when collecting data from others .

These considerations protect the rights of research participants, enhance research validity , and maintain scientific integrity.

In multistage sampling , you can use probability or non-probability sampling methods .

For a probability sample, you have to conduct probability sampling at every stage.

You can mix it up by using simple random sampling , systematic sampling , or stratified sampling to select units at different stages, depending on what is applicable and relevant to your study.

Multistage sampling can simplify data collection when you have large, geographically spread samples, and you can obtain a probability sample without a complete sampling frame.

But multistage sampling may not lead to a representative sample, and larger samples are needed for multistage samples to achieve the statistical properties of simple random samples .

These are four of the most common mixed methods designs :

  • Convergent parallel: Quantitative and qualitative data are collected at the same time and analyzed separately. After both analyses are complete, compare your results to draw overall conclusions. 
  • Embedded: Quantitative and qualitative data are collected at the same time, but within a larger quantitative or qualitative design. One type of data is secondary to the other.
  • Explanatory sequential: Quantitative data is collected and analyzed first, followed by qualitative data. You can use this design if you think your qualitative data will explain and contextualize your quantitative findings.
  • Exploratory sequential: Qualitative data is collected and analyzed first, followed by quantitative data. You can use this design if you think the quantitative data will confirm or validate your qualitative findings.

Triangulation in research means using multiple datasets, methods, theories and/or investigators to address a research question. It’s a research strategy that can help you enhance the validity and credibility of your findings.

Triangulation is mainly used in qualitative research , but it’s also commonly applied in quantitative research . Mixed methods research always uses triangulation.

In multistage sampling , or multistage cluster sampling, you draw a sample from a population using smaller and smaller groups at each stage.

This method is often used to collect data from a large, geographically spread group of people in national surveys, for example. You take advantage of hierarchical groupings (e.g., from state to city to neighborhood) to create a sample that’s less expensive and time-consuming to collect data from.

No, the steepness or slope of the line isn’t related to the correlation coefficient value. The correlation coefficient only tells you how closely your data fit on a line, so two datasets with the same correlation coefficient can have very different slopes.

To find the slope of the line, you’ll need to perform a regression analysis .

Correlation coefficients always range between -1 and 1.

The sign of the coefficient tells you the direction of the relationship: a positive value means the variables change together in the same direction, while a negative value means they change together in opposite directions.

The absolute value of a number is equal to the number without its sign. The absolute value of a correlation coefficient tells you the magnitude of the correlation: the greater the absolute value, the stronger the correlation.

These are the assumptions your data must meet if you want to use Pearson’s r :

  • Both variables are on an interval or ratio level of measurement
  • Data from both variables follow normal distributions
  • Your data have no outliers
  • Your data is from a random or representative sample
  • You expect a linear relationship between the two variables

Quantitative research designs can be divided into two main categories:

  • Correlational and descriptive designs are used to investigate characteristics, averages, trends, and associations between variables.
  • Experimental and quasi-experimental designs are used to test causal relationships .

Qualitative research designs tend to be more flexible. Common types of qualitative design include case study , ethnography , and grounded theory designs.

A well-planned research design helps ensure that your methods match your research aims, that you collect high-quality data, and that you use the right kind of analysis to answer your questions, utilizing credible sources . This allows you to draw valid , trustworthy conclusions.

The priorities of a research design can vary depending on the field, but you usually have to specify:

  • Your research questions and/or hypotheses
  • Your overall approach (e.g., qualitative or quantitative )
  • The type of design you’re using (e.g., a survey , experiment , or case study )
  • Your sampling methods or criteria for selecting subjects
  • Your data collection methods (e.g., questionnaires , observations)
  • Your data collection procedures (e.g., operationalization , timing and data management)
  • Your data analysis methods (e.g., statistical tests  or thematic analysis )

A research design is a strategy for answering your   research question . It defines your overall approach and determines how you will collect and analyze data.

Questionnaires can be self-administered or researcher-administered.

Self-administered questionnaires can be delivered online or in paper-and-pen formats, in person or through mail. All questions are standardized so that all respondents receive the same questions with identical wording.

Researcher-administered questionnaires are interviews that take place by phone, in-person, or online between researchers and respondents. You can gain deeper insights by clarifying questions for respondents or asking follow-up questions.

You can organize the questions logically, with a clear progression from simple to complex, or randomly between respondents. A logical flow helps respondents process the questionnaire easier and quicker, but it may lead to bias. Randomization can minimize the bias from order effects.

Closed-ended, or restricted-choice, questions offer respondents a fixed set of choices to select from. These questions are easier to answer quickly.

Open-ended or long-form questions allow respondents to answer in their own words. Because there are no restrictions on their choices, respondents can answer in ways that researchers may not have otherwise considered.

A questionnaire is a data collection tool or instrument, while a survey is an overarching research method that involves collecting and analyzing data from people using questionnaires.

The third variable and directionality problems are two main reasons why correlation isn’t causation .

The third variable problem means that a confounding variable affects both variables to make them seem causally related when they are not.

The directionality problem is when two variables correlate and might actually have a causal relationship, but it’s impossible to conclude which variable causes changes in the other.

Correlation describes an association between variables : when one variable changes, so does the other. A correlation is a statistical indicator of the relationship between variables.

Causation means that changes in one variable brings about changes in the other (i.e., there is a cause-and-effect relationship between variables). The two variables are correlated with each other, and there’s also a causal link between them.

While causation and correlation can exist simultaneously, correlation does not imply causation. In other words, correlation is simply a relationship where A relates to B—but A doesn’t necessarily cause B to happen (or vice versa). Mistaking correlation for causation is a common error and can lead to false cause fallacy .

Controlled experiments establish causality, whereas correlational studies only show associations between variables.

  • In an experimental design , you manipulate an independent variable and measure its effect on a dependent variable. Other variables are controlled so they can’t impact the results.
  • In a correlational design , you measure variables without manipulating any of them. You can test whether your variables change together, but you can’t be sure that one variable caused a change in another.

In general, correlational research is high in external validity while experimental research is high in internal validity .

A correlation is usually tested for two variables at a time, but you can test correlations between three or more variables.

A correlation coefficient is a single number that describes the strength and direction of the relationship between your variables.

Different types of correlation coefficients might be appropriate for your data based on their levels of measurement and distributions . The Pearson product-moment correlation coefficient (Pearson’s r ) is commonly used to assess a linear relationship between two quantitative variables.

A correlational research design investigates relationships between two variables (or more) without the researcher controlling or manipulating any of them. It’s a non-experimental type of quantitative research .

A correlation reflects the strength and/or direction of the association between two or more variables.

  • A positive correlation means that both variables change in the same direction.
  • A negative correlation means that the variables change in opposite directions.
  • A zero correlation means there’s no relationship between the variables.

Random error  is almost always present in scientific studies, even in highly controlled settings. While you can’t eradicate it completely, you can reduce random error by taking repeated measurements, using a large sample, and controlling extraneous variables .

You can avoid systematic error through careful design of your sampling , data collection , and analysis procedures. For example, use triangulation to measure your variables using multiple methods; regularly calibrate instruments or procedures; use random sampling and random assignment ; and apply masking (blinding) where possible.

Systematic error is generally a bigger problem in research.

With random error, multiple measurements will tend to cluster around the true value. When you’re collecting data from a large sample , the errors in different directions will cancel each other out.

Systematic errors are much more problematic because they can skew your data away from the true value. This can lead you to false conclusions ( Type I and II errors ) about the relationship between the variables you’re studying.

Random and systematic error are two types of measurement error.

Random error is a chance difference between the observed and true values of something (e.g., a researcher misreading a weighing scale records an incorrect measurement).

Systematic error is a consistent or proportional difference between the observed and true values of something (e.g., a miscalibrated scale consistently records weights as higher than they actually are).

On graphs, the explanatory variable is conventionally placed on the x-axis, while the response variable is placed on the y-axis.

  • If you have quantitative variables , use a scatterplot or a line graph.
  • If your response variable is categorical, use a scatterplot or a line graph.
  • If your explanatory variable is categorical, use a bar graph.

The term “ explanatory variable ” is sometimes preferred over “ independent variable ” because, in real world contexts, independent variables are often influenced by other variables. This means they aren’t totally independent.

Multiple independent variables may also be correlated with each other, so “explanatory variables” is a more appropriate term.

The difference between explanatory and response variables is simple:

  • An explanatory variable is the expected cause, and it explains the results.
  • A response variable is the expected effect, and it responds to other variables.

In a controlled experiment , all extraneous variables are held constant so that they can’t influence the results. Controlled experiments require:

  • A control group that receives a standard treatment, a fake treatment, or no treatment.
  • Random assignment of participants to ensure the groups are equivalent.

Depending on your study topic, there are various other methods of controlling variables .

There are 4 main types of extraneous variables :

  • Demand characteristics : environmental cues that encourage participants to conform to researchers’ expectations.
  • Experimenter effects : unintentional actions by researchers that influence study outcomes.
  • Situational variables : environmental variables that alter participants’ behaviors.
  • Participant variables : any characteristic or aspect of a participant’s background that could affect study results.

An extraneous variable is any variable that you’re not investigating that can potentially affect the dependent variable of your research study.

A confounding variable is a type of extraneous variable that not only affects the dependent variable, but is also related to the independent variable.

In a factorial design, multiple independent variables are tested.

If you test two variables, each level of one independent variable is combined with each level of the other independent variable to create different conditions.

Within-subjects designs have many potential threats to internal validity , but they are also very statistically powerful .

Advantages:

  • Only requires small samples
  • Statistically powerful
  • Removes the effects of individual differences on the outcomes

Disadvantages:

  • Internal validity threats reduce the likelihood of establishing a direct relationship between variables
  • Time-related effects, such as growth, can influence the outcomes
  • Carryover effects mean that the specific order of different treatments affect the outcomes

While a between-subjects design has fewer threats to internal validity , it also requires more participants for high statistical power than a within-subjects design .

  • Prevents carryover effects of learning and fatigue.
  • Shorter study duration.
  • Needs larger samples for high power.
  • Uses more resources to recruit participants, administer sessions, cover costs, etc.
  • Individual differences may be an alternative explanation for results.

Yes. Between-subjects and within-subjects designs can be combined in a single study when you have two or more independent variables (a factorial design). In a mixed factorial design, one variable is altered between subjects and another is altered within subjects.

In a between-subjects design , every participant experiences only one condition, and researchers assess group differences between participants in various conditions.

In a within-subjects design , each participant experiences all conditions, and researchers test the same participants repeatedly for differences between conditions.

The word “between” means that you’re comparing different conditions between groups, while the word “within” means you’re comparing different conditions within the same group.

Random assignment is used in experiments with a between-groups or independent measures design. In this research design, there’s usually a control group and one or more experimental groups. Random assignment helps ensure that the groups are comparable.

In general, you should always use random assignment in this type of experimental design when it is ethically possible and makes sense for your study topic.

To implement random assignment , assign a unique number to every member of your study’s sample .

Then, you can use a random number generator or a lottery method to randomly assign each number to a control or experimental group. You can also do so manually, by flipping a coin or rolling a dice to randomly assign participants to groups.

Random selection, or random sampling , is a way of selecting members of a population for your study’s sample.

In contrast, random assignment is a way of sorting the sample into control and experimental groups.

Random sampling enhances the external validity or generalizability of your results, while random assignment improves the internal validity of your study.

In experimental research, random assignment is a way of placing participants from your sample into different groups using randomization. With this method, every member of the sample has a known or equal chance of being placed in a control group or an experimental group.

“Controlling for a variable” means measuring extraneous variables and accounting for them statistically to remove their effects on other variables.

Researchers often model control variable data along with independent and dependent variable data in regression analyses and ANCOVAs . That way, you can isolate the control variable’s effects from the relationship between the variables of interest.

Control variables help you establish a correlational or causal relationship between variables by enhancing internal validity .

If you don’t control relevant extraneous variables , they may influence the outcomes of your study, and you may not be able to demonstrate that your results are really an effect of your independent variable .

A control variable is any variable that’s held constant in a research study. It’s not a variable of interest in the study, but it’s controlled because it could influence the outcomes.

Including mediators and moderators in your research helps you go beyond studying a simple relationship between two variables for a fuller picture of the real world. They are important to consider when studying complex correlational or causal relationships.

Mediators are part of the causal pathway of an effect, and they tell you how or why an effect takes place. Moderators usually help you judge the external validity of your study by identifying the limitations of when the relationship between variables holds.

If something is a mediating variable :

  • It’s caused by the independent variable .
  • It influences the dependent variable
  • When it’s taken into account, the statistical correlation between the independent and dependent variables is higher than when it isn’t considered.

A confounder is a third variable that affects variables of interest and makes them seem related when they are not. In contrast, a mediator is the mechanism of a relationship between two variables: it explains the process by which they are related.

A mediator variable explains the process through which two variables are related, while a moderator variable affects the strength and direction of that relationship.

There are three key steps in systematic sampling :

  • Define and list your population , ensuring that it is not ordered in a cyclical or periodic order.
  • Decide on your sample size and calculate your interval, k , by dividing your population by your target sample size.
  • Choose every k th member of the population as your sample.

Systematic sampling is a probability sampling method where researchers select members of the population at a regular interval – for example, by selecting every 15th person on a list of the population. If the population is in a random order, this can imitate the benefits of simple random sampling .

Yes, you can create a stratified sample using multiple characteristics, but you must ensure that every participant in your study belongs to one and only one subgroup. In this case, you multiply the numbers of subgroups for each characteristic to get the total number of groups.

For example, if you were stratifying by location with three subgroups (urban, rural, or suburban) and marital status with five subgroups (single, divorced, widowed, married, or partnered), you would have 3 x 5 = 15 subgroups.

You should use stratified sampling when your sample can be divided into mutually exclusive and exhaustive subgroups that you believe will take on different mean values for the variable that you’re studying.

Using stratified sampling will allow you to obtain more precise (with lower variance ) statistical estimates of whatever you are trying to measure.

For example, say you want to investigate how income differs based on educational attainment, but you know that this relationship can vary based on race. Using stratified sampling, you can ensure you obtain a large enough sample from each racial group, allowing you to draw more precise conclusions.

In stratified sampling , researchers divide subjects into subgroups called strata based on characteristics that they share (e.g., race, gender, educational attainment).

Once divided, each subgroup is randomly sampled using another probability sampling method.

Cluster sampling is more time- and cost-efficient than other probability sampling methods , particularly when it comes to large samples spread across a wide geographical area.

However, it provides less statistical certainty than other methods, such as simple random sampling , because it is difficult to ensure that your clusters properly represent the population as a whole.

There are three types of cluster sampling : single-stage, double-stage and multi-stage clustering. In all three types, you first divide the population into clusters, then randomly select clusters for use in your sample.

  • In single-stage sampling , you collect data from every unit within the selected clusters.
  • In double-stage sampling , you select a random sample of units from within the clusters.
  • In multi-stage sampling , you repeat the procedure of randomly sampling elements from within the clusters until you have reached a manageable sample.

Cluster sampling is a probability sampling method in which you divide a population into clusters, such as districts or schools, and then randomly select some of these clusters as your sample.

The clusters should ideally each be mini-representations of the population as a whole.

If properly implemented, simple random sampling is usually the best sampling method for ensuring both internal and external validity . However, it can sometimes be impractical and expensive to implement, depending on the size of the population to be studied,

If you have a list of every member of the population and the ability to reach whichever members are selected, you can use simple random sampling.

The American Community Survey  is an example of simple random sampling . In order to collect detailed data on the population of the US, the Census Bureau officials randomly select 3.5 million households per year and use a variety of methods to convince them to fill out the survey.

Simple random sampling is a type of probability sampling in which the researcher randomly selects a subset of participants from a population . Each member of the population has an equal chance of being selected. Data is then collected from as large a percentage as possible of this random subset.

Quasi-experimental design is most useful in situations where it would be unethical or impractical to run a true experiment .

Quasi-experiments have lower internal validity than true experiments, but they often have higher external validity  as they can use real-world interventions instead of artificial laboratory settings.

A quasi-experiment is a type of research design that attempts to establish a cause-and-effect relationship. The main difference with a true experiment is that the groups are not randomly assigned.

Blinding is important to reduce research bias (e.g., observer bias , demand characteristics ) and ensure a study’s internal validity .

If participants know whether they are in a control or treatment group , they may adjust their behavior in ways that affect the outcome that researchers are trying to measure. If the people administering the treatment are aware of group assignment, they may treat participants differently and thus directly or indirectly influence the final results.

  • In a single-blind study , only the participants are blinded.
  • In a double-blind study , both participants and experimenters are blinded.
  • In a triple-blind study , the assignment is hidden not only from participants and experimenters, but also from the researchers analyzing the data.

Blinding means hiding who is assigned to the treatment group and who is assigned to the control group in an experiment .

A true experiment (a.k.a. a controlled experiment) always includes at least one control group that doesn’t receive the experimental treatment.

However, some experiments use a within-subjects design to test treatments without a control group. In these designs, you usually compare one group’s outcomes before and after a treatment (instead of comparing outcomes between different groups).

For strong internal validity , it’s usually best to include a control group if possible. Without a control group, it’s harder to be certain that the outcome was caused by the experimental treatment and not by other variables.

An experimental group, also known as a treatment group, receives the treatment whose effect researchers wish to study, whereas a control group does not. They should be identical in all other ways.

Individual Likert-type questions are generally considered ordinal data , because the items have clear rank order, but don’t have an even distribution.

Overall Likert scale scores are sometimes treated as interval data. These scores are considered to have directionality and even spacing between them.

The type of data determines what statistical tests you should use to analyze your data.

A Likert scale is a rating scale that quantitatively assesses opinions, attitudes, or behaviors. It is made up of 4 or more questions that measure a single attitude or trait when response scores are combined.

To use a Likert scale in a survey , you present participants with Likert-type questions or statements, and a continuum of items, usually with 5 or 7 possible responses, to capture their degree of agreement.

In scientific research, concepts are the abstract ideas or phenomena that are being studied (e.g., educational achievement). Variables are properties or characteristics of the concept (e.g., performance at school), while indicators are ways of measuring or quantifying variables (e.g., yearly grade reports).

The process of turning abstract concepts into measurable variables and indicators is called operationalization .

There are various approaches to qualitative data analysis , but they all share five steps in common:

  • Prepare and organize your data.
  • Review and explore your data.
  • Develop a data coding system.
  • Assign codes to the data.
  • Identify recurring themes.

The specifics of each step depend on the focus of the analysis. Some common approaches include textual analysis , thematic analysis , and discourse analysis .

There are five common approaches to qualitative research :

  • Grounded theory involves collecting data in order to develop new theories.
  • Ethnography involves immersing yourself in a group or organization to understand its culture.
  • Narrative research involves interpreting stories to understand how people make sense of their experiences and perceptions.
  • Phenomenological research involves investigating phenomena through people’s lived experiences.
  • Action research links theory and practice in several cycles to drive innovative changes.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

Operationalization means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioral avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalize the variables that you want to measure.

When conducting research, collecting original data has significant advantages:

  • You can tailor data collection to your specific research aims (e.g. understanding the needs of your consumers or user testing your website)
  • You can control and standardize the process for high reliability and validity (e.g. choosing appropriate measurements and sampling methods )

However, there are also some drawbacks: data collection can be time-consuming, labor-intensive and expensive. In some cases, it’s more efficient to use secondary data that has already been collected by someone else, but the data might be less reliable.

Data collection is the systematic process by which observations or measurements are gathered in research. It is used in many different contexts by academics, governments, businesses, and other organizations.

There are several methods you can use to decrease the impact of confounding variables on your research: restriction, matching, statistical control and randomization.

In restriction , you restrict your sample by only including certain subjects that have the same values of potential confounding variables.

In matching , you match each of the subjects in your treatment group with a counterpart in the comparison group. The matched subjects have the same values on any potential confounding variables, and only differ in the independent variable .

In statistical control , you include potential confounders as variables in your regression .

In randomization , you randomly assign the treatment (or independent variable) in your study to a sufficiently large number of subjects, which allows you to control for all potential confounding variables.

A confounding variable is closely related to both the independent and dependent variables in a study. An independent variable represents the supposed cause , while the dependent variable is the supposed effect . A confounding variable is a third variable that influences both the independent and dependent variables.

Failing to account for confounding variables can cause you to wrongly estimate the relationship between your independent and dependent variables.

To ensure the internal validity of your research, you must consider the impact of confounding variables. If you fail to account for them, you might over- or underestimate the causal relationship between your independent and dependent variables , or even find a causal relationship where none exists.

Yes, but including more than one of either type requires multiple research questions .

For example, if you are interested in the effect of a diet on health, you can use multiple measures of health: blood sugar, blood pressure, weight, pulse, and many more. Each of these is its own dependent variable with its own research question.

You could also choose to look at the effect of exercise levels as well as diet, or even the additional effect of the two combined. Each of these is a separate independent variable .

To ensure the internal validity of an experiment , you should only change one independent variable at a time.

No. The value of a dependent variable depends on an independent variable, so a variable cannot be both independent and dependent at the same time. It must be either the cause or the effect, not both!

You want to find out how blood sugar levels are affected by drinking diet soda and regular soda, so you conduct an experiment .

  • The type of soda – diet or regular – is the independent variable .
  • The level of blood sugar that you measure is the dependent variable – it changes depending on the type of soda.

Determining cause and effect is one of the most important parts of scientific research. It’s essential to know which is the cause – the independent variable – and which is the effect – the dependent variable.

In non-probability sampling , the sample is selected based on non-random criteria, and not every member of the population has a chance of being included.

Common non-probability sampling methods include convenience sampling , voluntary response sampling, purposive sampling , snowball sampling, and quota sampling .

Probability sampling means that every member of the target population has a known chance of being included in the sample.

Probability sampling methods include simple random sampling , systematic sampling , stratified sampling , and cluster sampling .

Using careful research design and sampling procedures can help you avoid sampling bias . Oversampling can be used to correct undercoverage bias .

Some common types of sampling bias include self-selection bias , nonresponse bias , undercoverage bias , survivorship bias , pre-screening or advertising bias, and healthy user bias.

Sampling bias is a threat to external validity – it limits the generalizability of your findings to a broader group of people.

A sampling error is the difference between a population parameter and a sample statistic .

A statistic refers to measures about the sample , while a parameter refers to measures about the population .

Populations are used when a research question requires data from every member of the population. This is usually only feasible when the population is small and easily accessible.

Samples are used to make inferences about populations . Samples are easier to collect data from because they are practical, cost-effective, convenient, and manageable.

There are seven threats to external validity : selection bias , history, experimenter effect, Hawthorne effect , testing effect, aptitude-treatment and situation effect.

The two types of external validity are population validity (whether you can generalize to other groups of people) and ecological validity (whether you can generalize to other situations and settings).

The external validity of a study is the extent to which you can generalize your findings to different groups of people, situations, and measures.

Cross-sectional studies cannot establish a cause-and-effect relationship or analyze behavior over a period of time. To investigate cause and effect, you need to do a longitudinal study or an experimental study .

Cross-sectional studies are less expensive and time-consuming than many other types of study. They can provide useful insights into a population’s characteristics and identify correlations for further research.

Sometimes only cross-sectional data is available for analysis; other times your research question may only require a cross-sectional study to answer it.

Longitudinal studies can last anywhere from weeks to decades, although they tend to be at least a year long.

The 1970 British Cohort Study , which has collected data on the lives of 17,000 Brits since their births in 1970, is one well-known example of a longitudinal study .

Longitudinal studies are better to establish the correct sequence of events, identify changes over time, and provide insight into cause-and-effect relationships, but they also tend to be more expensive and time-consuming than other types of studies.

Longitudinal studies and cross-sectional studies are two different types of research design . In a cross-sectional study you collect data from a population at a specific point in time; in a longitudinal study you repeatedly collect data from the same sample over an extended period of time.

Longitudinal study Cross-sectional study
observations Observations at a in time
Observes the multiple times Observes (a “cross-section”) in the population
Follows in participants over time Provides of society at a given point

There are eight threats to internal validity : history, maturation, instrumentation, testing, selection bias , regression to the mean, social interaction and attrition .

Internal validity is the extent to which you can be confident that a cause-and-effect relationship established in a study cannot be explained by other factors.

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts and meanings, use qualitative methods .
  • If you want to analyze a large amount of readily-available data, use secondary data. If you want data specific to your purposes with control over how it is generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

A confounding variable , also called a confounder or confounding factor, is a third variable in a study examining a potential cause-and-effect relationship.

A confounding variable is related to both the supposed cause and the supposed effect of the study. It can be difficult to separate the true effect of the independent variable from the effect of the confounding variable.

In your research design , it’s important to identify potential confounding variables and plan how you will reduce their impact.

Discrete and continuous variables are two types of quantitative variables :

  • Discrete variables represent counts (e.g. the number of objects in a collection).
  • Continuous variables represent measurable amounts (e.g. water volume or weight).

Quantitative variables are any variables where the data represent amounts (e.g. height, weight, or age).

Categorical variables are any variables where the data represent groups. This includes rankings (e.g. finishing places in a race), classifications (e.g. brands of cereal), and binary outcomes (e.g. coin flips).

You need to know what type of variables you are working with to choose the right statistical test for your data and interpret your results .

You can think of independent and dependent variables in terms of cause and effect: an independent variable is the variable you think is the cause , while a dependent variable is the effect .

In an experiment, you manipulate the independent variable and measure the outcome in the dependent variable. For example, in an experiment about the effect of nutrients on crop growth:

  • The  independent variable  is the amount of nutrients added to the crop field.
  • The  dependent variable is the biomass of the crops at harvest time.

Defining your variables, and deciding how you will manipulate and measure them, is an important part of experimental design .

Experimental design means planning a set of procedures to investigate a relationship between variables . To design a controlled experiment, you need:

  • A testable hypothesis
  • At least one independent variable that can be precisely manipulated
  • At least one dependent variable that can be precisely measured

When designing the experiment, you decide:

  • How you will manipulate the variable(s)
  • How you will control for any potential confounding variables
  • How many subjects or samples will be included in the study
  • How subjects will be assigned to treatment levels

Experimental design is essential to the internal and external validity of your experiment.

I nternal validity is the degree of confidence that the causal relationship you are testing is not influenced by other factors or variables .

External validity is the extent to which your results can be generalized to other contexts.

The validity of your experiment depends on your experimental design .

Reliability and validity are both about how well a method measures something:

  • Reliability refers to the  consistency of a measure (whether the results can be reproduced under the same conditions).
  • Validity   refers to the  accuracy of a measure (whether the results really do represent what they are supposed to measure).

If you are doing experimental research, you also have to consider the internal and external validity of your experiment.

A sample is a subset of individuals from a larger population . Sampling means selecting the group that you will actually collect data from in your research. For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

In statistics, sampling allows you to test a hypothesis about the characteristics of a population.

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to systematically measure variables and test hypotheses . Qualitative methods allow you to explore concepts and experiences in more detail.

Methodology refers to the overarching strategy and rationale of your research project . It involves studying the methods used in your field and the theories or principles behind them, in order to develop an approach that matches your objectives.

Methods are the specific tools and procedures you use to collect and analyze data (for example, experiments, surveys , and statistical tests ).

In shorter scientific papers, where the aim is to report the findings of a specific study, you might simply describe what you did in a methods section .

In a longer or more complex research project, such as a thesis or dissertation , you will probably include a methodology section , where you explain your approach to answering the research questions and cite relevant sources to support your choice of methods.

Ask our team

Want to contact us directly? No problem.  We  are always here for you.

Support team - Nina

Our team helps students graduate by offering:

  • A world-class citation generator
  • Plagiarism Checker software powered by Turnitin
  • Innovative Citation Checker software
  • Professional proofreading services
  • Over 300 helpful articles about academic writing, citing sources, plagiarism, and more

Scribbr specializes in editing study-related documents . We proofread:

  • PhD dissertations
  • Research proposals
  • Personal statements
  • Admission essays
  • Motivation letters
  • Reflection papers
  • Journal articles
  • Capstone projects

Scribbr’s Plagiarism Checker is powered by elements of Turnitin’s Similarity Checker , namely the plagiarism detection software and the Internet Archive and Premium Scholarly Publications content databases .

The add-on AI detector is powered by Scribbr’s proprietary software.

The Scribbr Citation Generator is developed using the open-source Citation Style Language (CSL) project and Frank Bennett’s citeproc-js . It’s the same technology used by dozens of other popular citation tools, including Mendeley and Zotero.

You can find all the citation styles and locales used in the Scribbr Citation Generator in our publicly accessible repository on Github .

Frequently asked questions

What’s the difference between exploratory and explanatory research.

Exploratory research explores the main aspects of a new or barely researched question.

Explanatory research explains the causes and effects of an already widely researched question.

Frequently asked questions: Methodology

Quantitative observations involve measuring or counting something and expressing the result in numerical form, while qualitative observations involve describing something in non-numerical terms, such as its appearance, texture, or color.

To make quantitative observations , you need to use instruments that are capable of measuring the quantity you want to observe. For example, you might use a ruler to measure the length of an object or a thermometer to measure its temperature.

Scope of research is determined at the beginning of your research process , prior to the data collection stage. Sometimes called “scope of study,” your scope delineates what will and will not be covered in your project. It helps you focus your work and your time, ensuring that you’ll be able to achieve your goals and outcomes.

Defining a scope can be very useful in any research project, from a research proposal to a thesis or dissertation . A scope is needed for all types of research: quantitative , qualitative , and mixed methods .

To define your scope of research, consider the following:

  • Budget constraints or any specifics of grant funding
  • Your proposed timeline and duration
  • Specifics about your population of study, your proposed sample size , and the research methodology you’ll pursue
  • Any inclusion and exclusion criteria
  • Any anticipated control , extraneous , or confounding variables that could bias your research if not accounted for properly.

Inclusion and exclusion criteria are predominantly used in non-probability sampling . In purposive sampling and snowball sampling , restrictions apply as to who can be included in the sample .

Inclusion and exclusion criteria are typically presented and discussed in the methodology section of your thesis or dissertation .

The purpose of theory-testing mode is to find evidence in order to disprove, refine, or support a theory. As such, generalisability is not the aim of theory-testing mode.

Due to this, the priority of researchers in theory-testing mode is to eliminate alternative causes for relationships between variables . In other words, they prioritise internal validity over external validity , including ecological validity .

Convergent validity shows how much a measure of one construct aligns with other measures of the same or related constructs .

On the other hand, concurrent validity is about how a measure matches up to some known criterion or gold standard, which can be another measure.

Although both types of validity are established by calculating the association or correlation between a test score and another variable , they represent distinct validation methods.

Validity tells you how accurately a method measures what it was designed to measure. There are 4 main types of validity :

  • Construct validity : Does the test measure the construct it was designed to measure?
  • Face validity : Does the test appear to be suitable for its objectives ?
  • Content validity : Does the test cover all relevant parts of the construct it aims to measure.
  • Criterion validity : Do the results accurately measure the concrete outcome they are designed to measure?

Criterion validity evaluates how well a test measures the outcome it was designed to measure. An outcome can be, for example, the onset of a disease.

Criterion validity consists of two subtypes depending on the time at which the two measures (the criterion and your test) are obtained:

  • Concurrent validity is a validation strategy where the the scores of a test and the criterion are obtained at the same time
  • Predictive validity is a validation strategy where the criterion variables are measured after the scores of the test

Attrition refers to participants leaving a study. It always happens to some extent – for example, in randomised control trials for medical research.

Differential attrition occurs when attrition or dropout rates differ systematically between the intervention and the control group . As a result, the characteristics of the participants who drop out differ from the characteristics of those who stay in the study. Because of this, study results may be biased .

Criterion validity and construct validity are both types of measurement validity . In other words, they both show you how accurately a method measures something.

While construct validity is the degree to which a test or other measurement method measures what it claims to measure, criterion validity is the degree to which a test can predictively (in the future) or concurrently (in the present) measure something.

Construct validity is often considered the overarching type of measurement validity . You need to have face validity , content validity , and criterion validity in order to achieve construct validity.

Convergent validity and discriminant validity are both subtypes of construct validity . Together, they help you evaluate whether a test measures the concept it was designed to measure.

  • Convergent validity indicates whether a test that is designed to measure a particular construct correlates with other tests that assess the same or similar construct.
  • Discriminant validity indicates whether two tests that should not be highly related to each other are indeed not related. This type of validity is also called divergent validity .

You need to assess both in order to demonstrate construct validity. Neither one alone is sufficient for establishing construct validity.

Face validity and content validity are similar in that they both evaluate how suitable the content of a test is. The difference is that face validity is subjective, and assesses content at surface level.

When a test has strong face validity, anyone would agree that the test’s questions appear to measure what they are intended to measure.

For example, looking at a 4th grade math test consisting of problems in which students have to add and multiply, most people would agree that it has strong face validity (i.e., it looks like a math test).

On the other hand, content validity evaluates how well a test represents all the aspects of a topic. Assessing content validity is more systematic and relies on expert evaluation. of each question, analysing whether each one covers the aspects that the test was designed to cover.

A 4th grade math test would have high content validity if it covered all the skills taught in that grade. Experts(in this case, math teachers), would have to evaluate the content validity by comparing the test to the learning objectives.

Content validity shows you how accurately a test or other measurement method taps  into the various aspects of the specific construct you are researching.

In other words, it helps you answer the question: “does the test measure all aspects of the construct I want to measure?” If it does, then the test has high content validity.

The higher the content validity, the more accurate the measurement of the construct.

If the test fails to include parts of the construct, or irrelevant parts are included, the validity of the instrument is threatened, which brings your results into question.

Construct validity refers to how well a test measures the concept (or construct) it was designed to measure. Assessing construct validity is especially important when you’re researching concepts that can’t be quantified and/or are intangible, like introversion. To ensure construct validity your test should be based on known indicators of introversion ( operationalisation ).

On the other hand, content validity assesses how well the test represents all aspects of the construct. If some aspects are missing or irrelevant parts are included, the test has low content validity.

  • Discriminant validity indicates whether two tests that should not be highly related to each other are indeed not related

Construct validity has convergent and discriminant subtypes. They assist determine if a test measures the intended notion.

The reproducibility and replicability of a study can be ensured by writing a transparent, detailed method section and using clear, unambiguous language.

Reproducibility and replicability are related terms.

  • A successful reproduction shows that the data analyses were conducted in a fair and honest manner.
  • A successful replication shows that the reliability of the results is high.
  • Reproducing research entails reanalysing the existing data in the same manner.
  • Replicating (or repeating ) the research entails reconducting the entire analysis, including the collection of new data . 

Snowball sampling is a non-probability sampling method . Unlike probability sampling (which involves some form of random selection ), the initial individuals selected to be studied are the ones who recruit new participants.

Because not every member of the target population has an equal chance of being recruited into the sample, selection in snowball sampling is non-random.

Snowball sampling is a non-probability sampling method , where there is not an equal chance for every member of the population to be included in the sample .

This means that you cannot use inferential statistics and make generalisations – often the goal of quantitative research . As such, a snowball sample is not representative of the target population, and is usually a better fit for qualitative research .

Snowball sampling relies on the use of referrals. Here, the researcher recruits one or more initial participants, who then recruit the next ones. 

Participants share similar characteristics and/or know each other. Because of this, not every member of the population has an equal chance of being included in the sample, giving rise to sampling bias .

Snowball sampling is best used in the following cases:

  • If there is no sampling frame available (e.g., people with a rare disease)
  • If the population of interest is hard to access or locate (e.g., people experiencing homelessness)
  • If the research focuses on a sensitive topic (e.g., extra-marital affairs)

Stratified sampling and quota sampling both involve dividing the population into subgroups and selecting units from each subgroup. The purpose in both cases is to select a representative sample and/or to allow comparisons between subgroups.

The main difference is that in stratified sampling, you draw a random sample from each subgroup ( probability sampling ). In quota sampling you select a predetermined number or proportion of units, in a non-random manner ( non-probability sampling ).

Random sampling or probability sampling is based on random selection. This means that each unit has an equal chance (i.e., equal probability) of being included in the sample.

On the other hand, convenience sampling involves stopping people at random, which means that not everyone has an equal chance of being selected depending on the place, time, or day you are collecting your data.

Convenience sampling and quota sampling are both non-probability sampling methods. They both use non-random criteria like availability, geographical proximity, or expert knowledge to recruit study participants.

However, in convenience sampling, you continue to sample units or cases until you reach the required sample size.

In quota sampling, you first need to divide your population of interest into subgroups (strata) and estimate their proportions (quota) in the population. Then you can start your data collection , using convenience sampling to recruit participants, until the proportions in each subgroup coincide with the estimated proportions in the population.

A sampling frame is a list of every member in the entire population . It is important that the sampling frame is as complete as possible, so that your sample accurately reflects your population.

Stratified and cluster sampling may look similar, but bear in mind that groups created in cluster sampling are heterogeneous , so the individual characteristics in the cluster vary. In contrast, groups created in stratified sampling are homogeneous , as units share characteristics.

Relatedly, in cluster sampling you randomly select entire groups and include all units of each group in your sample. However, in stratified sampling, you select some units of all groups and include them in your sample. In this way, both methods can ensure that your sample is representative of the target population .

When your population is large in size, geographically dispersed, or difficult to contact, it’s necessary to use a sampling method .

This allows you to gather information from a smaller part of the population, i.e. the sample, and make accurate statements by using statistical analysis. A few sampling methods include simple random sampling , convenience sampling , and snowball sampling .

The two main types of social desirability bias are:

  • Self-deceptive enhancement (self-deception): The tendency to see oneself in a favorable light without realizing it.
  • Impression managemen t (other-deception): The tendency to inflate one’s abilities or achievement in order to make a good impression on other people.

Response bias refers to conditions or factors that take place during the process of responding to surveys, affecting the responses. One type of response bias is social desirability bias .

Demand characteristics are aspects of experiments that may give away the research objective to participants. Social desirability bias occurs when participants automatically try to respond in ways that make them seem likeable in a study, even if it means misrepresenting how they truly feel.

Participants may use demand characteristics to infer social norms or experimenter expectancies and act in socially desirable ways, so you should try to control for demand characteristics wherever possible.

A systematic review is secondary research because it uses existing research. You don’t collect new data yourself.

Ethical considerations in research are a set of principles that guide your research designs and practices. These principles include voluntary participation, informed consent, anonymity, confidentiality, potential for harm, and results communication.

Scientists and researchers must always adhere to a certain code of conduct when collecting data from others .

These considerations protect the rights of research participants, enhance research validity , and maintain scientific integrity.

Research ethics matter for scientific integrity, human rights and dignity, and collaboration between science and society. These principles make sure that participation in studies is voluntary, informed, and safe.

Research misconduct means making up or falsifying data, manipulating data analyses, or misrepresenting results in research reports. It’s a form of academic fraud.

These actions are committed intentionally and can have serious consequences; research misconduct is not a simple mistake or a point of disagreement but a serious ethical failure.

Anonymity means you don’t know who the participants are, while confidentiality means you know who they are but remove identifying information from your research report. Both are important ethical considerations .

You can only guarantee anonymity by not collecting any personally identifying information – for example, names, phone numbers, email addresses, IP addresses, physical characteristics, photos, or videos.

You can keep data confidential by using aggregate information in your research report, so that you only refer to groups of participants rather than individuals.

Peer review is a process of evaluating submissions to an academic journal. Utilising rigorous criteria, a panel of reviewers in the same subject area decide whether to accept each submission for publication.

For this reason, academic journals are often considered among the most credible sources you can use in a research project – provided that the journal itself is trustworthy and well regarded.

In general, the peer review process follows the following steps:

  • First, the author submits the manuscript to the editor.
  • Reject the manuscript and send it back to author, or
  • Send it onward to the selected peer reviewer(s)
  • Next, the peer review process occurs. The reviewer provides feedback, addressing any major or minor issues with the manuscript, and gives their advice regarding what edits should be made.
  • Lastly, the edited manuscript is sent back to the author. They input the edits, and resubmit it to the editor for publication.

Peer review can stop obviously problematic, falsified, or otherwise untrustworthy research from being published. It also represents an excellent opportunity to get feedback from renowned experts in your field.

It acts as a first defence, helping you ensure your argument is clear and that there are no gaps, vague terms, or unanswered questions for readers who weren’t involved in the research process.

Peer-reviewed articles are considered a highly credible source due to this stringent process they go through before publication.

Many academic fields use peer review , largely to determine whether a manuscript is suitable for publication. Peer review enhances the credibility of the published manuscript.

However, peer review is also common in non-academic settings. The United Nations, the European Union, and many individual nations use peer review to evaluate grant applications. It is also widely used in medical and health-related fields as a teaching or quality-of-care measure.

Peer assessment is often used in the classroom as a pedagogical tool. Both receiving feedback and providing it are thought to enhance the learning process, helping students think critically and collaboratively.

  • In a single-blind study , only the participants are blinded.
  • In a double-blind study , both participants and experimenters are blinded.
  • In a triple-blind study , the assignment is hidden not only from participants and experimenters, but also from the researchers analysing the data.

Blinding is important to reduce bias (e.g., observer bias , demand characteristics ) and ensure a study’s internal validity .

If participants know whether they are in a control or treatment group , they may adjust their behaviour in ways that affect the outcome that researchers are trying to measure. If the people administering the treatment are aware of group assignment, they may treat participants differently and thus directly or indirectly influence the final results.

Blinding means hiding who is assigned to the treatment group and who is assigned to the control group in an experiment .

Explanatory research is a research method used to investigate how or why something occurs when only a small amount of information is available pertaining to that topic. It can help you increase your understanding of a given topic.

Explanatory research is used to investigate how or why a phenomenon occurs. Therefore, this type of research is often one of the first stages in the research process , serving as a jumping-off point for future research.

Exploratory research is a methodology approach that explores research questions that have not previously been studied in depth. It is often used when the issue you’re studying is new, or the data collection process is challenging in some way.

Exploratory research is often used when the issue you’re studying is new or when the data collection process is challenging for some reason.

You can use exploratory research if you have a general idea or a specific question that you want to study but there is no preexisting knowledge or paradigm with which to study it.

To implement random assignment , assign a unique number to every member of your study’s sample .

Then, you can use a random number generator or a lottery method to randomly assign each number to a control or experimental group. You can also do so manually, by flipping a coin or rolling a die to randomly assign participants to groups.

Random selection, or random sampling , is a way of selecting members of a population for your study’s sample.

In contrast, random assignment is a way of sorting the sample into control and experimental groups.

Random sampling enhances the external validity or generalisability of your results, while random assignment improves the internal validity of your study.

Random assignment is used in experiments with a between-groups or independent measures design. In this research design, there’s usually a control group and one or more experimental groups. Random assignment helps ensure that the groups are comparable.

In general, you should always use random assignment in this type of experimental design when it is ethically possible and makes sense for your study topic.

Clean data are valid, accurate, complete, consistent, unique, and uniform. Dirty data include inconsistencies and errors.

Dirty data can come from any part of the research process, including poor research design , inappropriate measurement materials, or flawed data entry.

Data cleaning takes place between data collection and data analyses. But you can use some methods even before collecting data.

For clean data, you should start by designing measures that collect valid data. Data validation at the time of data entry or collection helps you minimize the amount of data cleaning you’ll need to do.

After data collection, you can use data standardisation and data transformation to clean your data. You’ll also deal with any missing values, outliers, and duplicate values.

Data cleaning involves spotting and resolving potential data inconsistencies or errors to improve your data quality. An error is any value (e.g., recorded weight) that doesn’t reflect the true value (e.g., actual weight) of something that’s being measured.

In this process, you review, analyse, detect, modify, or remove ‘dirty’ data to make your dataset ‘clean’. Data cleaning is also called data cleansing or data scrubbing.

Data cleaning is necessary for valid and appropriate analyses. Dirty data contain inconsistencies or errors , but cleaning your data helps you minimise or resolve these.

Without data cleaning, you could end up with a Type I or II error in your conclusion. These types of erroneous conclusions can be practically significant with important consequences, because they lead to misplaced investments or missed opportunities.

Observer bias occurs when a researcher’s expectations, opinions, or prejudices influence what they perceive or record in a study. It usually affects studies when observers are aware of the research aims or hypotheses. This type of research bias is also called detection bias or ascertainment bias .

The observer-expectancy effect occurs when researchers influence the results of their own study through interactions with participants.

Researchers’ own beliefs and expectations about the study results may unintentionally influence participants through demand characteristics .

You can use several tactics to minimise observer bias .

  • Use masking (blinding) to hide the purpose of your study from all observers.
  • Triangulate your data with different data collection methods or sources.
  • Use multiple observers and ensure inter-rater reliability.
  • Train your observers to make sure data is consistently recorded between them.
  • Standardise your observation procedures to make sure they are structured and clear.

Naturalistic observation is a valuable tool because of its flexibility, external validity , and suitability for topics that can’t be studied in a lab setting.

The downsides of naturalistic observation include its lack of scientific control , ethical considerations , and potential for bias from observers and subjects.

Naturalistic observation is a qualitative research method where you record the behaviours of your research subjects in real-world settings. You avoid interfering or influencing anything in a naturalistic observation.

You can think of naturalistic observation as ‘people watching’ with a purpose.

Closed-ended, or restricted-choice, questions offer respondents a fixed set of choices to select from. These questions are easier to answer quickly.

Open-ended or long-form questions allow respondents to answer in their own words. Because there are no restrictions on their choices, respondents can answer in ways that researchers may not have otherwise considered.

You can organise the questions logically, with a clear progression from simple to complex, or randomly between respondents. A logical flow helps respondents process the questionnaire easier and quicker, but it may lead to bias. Randomisation can minimise the bias from order effects.

Questionnaires can be self-administered or researcher-administered.

Self-administered questionnaires can be delivered online or in paper-and-pen formats, in person or by post. All questions are standardised so that all respondents receive the same questions with identical wording.

Researcher-administered questionnaires are interviews that take place by phone, in person, or online between researchers and respondents. You can gain deeper insights by clarifying questions for respondents or asking follow-up questions.

In a controlled experiment , all extraneous variables are held constant so that they can’t influence the results. Controlled experiments require:

  • A control group that receives a standard treatment, a fake treatment, or no treatment
  • Random assignment of participants to ensure the groups are equivalent

Depending on your study topic, there are various other methods of controlling variables .

An experimental group, also known as a treatment group, receives the treatment whose effect researchers wish to study, whereas a control group does not. They should be identical in all other ways.

A true experiment (aka a controlled experiment) always includes at least one control group that doesn’t receive the experimental treatment.

However, some experiments use a within-subjects design to test treatments without a control group. In these designs, you usually compare one group’s outcomes before and after a treatment (instead of comparing outcomes between different groups).

For strong internal validity , it’s usually best to include a control group if possible. Without a control group, it’s harder to be certain that the outcome was caused by the experimental treatment and not by other variables.

A questionnaire is a data collection tool or instrument, while a survey is an overarching research method that involves collecting and analysing data from people using questionnaires.

A Likert scale is a rating scale that quantitatively assesses opinions, attitudes, or behaviours. It is made up of four or more questions that measure a single attitude or trait when response scores are combined.

To use a Likert scale in a survey , you present participants with Likert-type questions or statements, and a continuum of items, usually with five or seven possible responses, to capture their degree of agreement.

Individual Likert-type questions are generally considered ordinal data , because the items have clear rank order, but don’t have an even distribution.

Overall Likert scale scores are sometimes treated as interval data. These scores are considered to have directionality and even spacing between them.

The type of data determines what statistical tests you should use to analyse your data.

A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (‘ x affects y because …’).

A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses. In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess. It should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

Cross-sectional studies are less expensive and time-consuming than many other types of study. They can provide useful insights into a population’s characteristics and identify correlations for further research.

Sometimes only cross-sectional data are available for analysis; other times your research question may only require a cross-sectional study to answer it.

Cross-sectional studies cannot establish a cause-and-effect relationship or analyse behaviour over a period of time. To investigate cause and effect, you need to do a longitudinal study or an experimental study .

Longitudinal studies and cross-sectional studies are two different types of research design . In a cross-sectional study you collect data from a population at a specific point in time; in a longitudinal study you repeatedly collect data from the same sample over an extended period of time.

Longitudinal study Cross-sectional study
observations Observations at a in time
Observes the multiple times Observes (a ‘cross-section’) in the population
Follows in participants over time Provides of society at a given point

Longitudinal studies are better to establish the correct sequence of events, identify changes over time, and provide insight into cause-and-effect relationships, but they also tend to be more expensive and time-consuming than other types of studies.

The 1970 British Cohort Study , which has collected data on the lives of 17,000 Brits since their births in 1970, is one well-known example of a longitudinal study .

Longitudinal studies can last anywhere from weeks to decades, although they tend to be at least a year long.

A correlation reflects the strength and/or direction of the association between two or more variables.

  • A positive correlation means that both variables change in the same direction.
  • A negative correlation means that the variables change in opposite directions.
  • A zero correlation means there’s no relationship between the variables.

A correlational research design investigates relationships between two variables (or more) without the researcher controlling or manipulating any of them. It’s a non-experimental type of quantitative research .

A correlation coefficient is a single number that describes the strength and direction of the relationship between your variables.

Different types of correlation coefficients might be appropriate for your data based on their levels of measurement and distributions . The Pearson product-moment correlation coefficient (Pearson’s r ) is commonly used to assess a linear relationship between two quantitative variables.

Controlled experiments establish causality, whereas correlational studies only show associations between variables.

  • In an experimental design , you manipulate an independent variable and measure its effect on a dependent variable. Other variables are controlled so they can’t impact the results.
  • In a correlational design , you measure variables without manipulating any of them. You can test whether your variables change together, but you can’t be sure that one variable caused a change in another.

In general, correlational research is high in external validity while experimental research is high in internal validity .

The third variable and directionality problems are two main reasons why correlation isn’t causation .

The third variable problem means that a confounding variable affects both variables to make them seem causally related when they are not.

The directionality problem is when two variables correlate and might actually have a causal relationship, but it’s impossible to conclude which variable causes changes in the other.

As a rule of thumb, questions related to thoughts, beliefs, and feelings work well in focus groups . Take your time formulating strong questions, paying special attention to phrasing. Be careful to avoid leading questions , which can bias your responses.

Overall, your focus group questions should be:

  • Open-ended and flexible
  • Impossible to answer with ‘yes’ or ‘no’ (questions that start with ‘why’ or ‘how’ are often best)
  • Unambiguous, getting straight to the point while still stimulating discussion
  • Unbiased and neutral

Social desirability bias is the tendency for interview participants to give responses that will be viewed favourably by the interviewer or other participants. It occurs in all types of interviews and surveys , but is most common in semi-structured interviews , unstructured interviews , and focus groups .

Social desirability bias can be mitigated by ensuring participants feel at ease and comfortable sharing their views. Make sure to pay attention to your own body language and any physical or verbal cues, such as nodding or widening your eyes.

This type of bias in research can also occur in observations if the participants know they’re being observed. They might alter their behaviour accordingly.

A focus group is a research method that brings together a small group of people to answer questions in a moderated setting. The group is chosen due to predefined demographic traits, and the questions are designed to shed light on a topic of interest. It is one of four types of interviews .

The four most common types of interviews are:

  • Structured interviews : The questions are predetermined in both topic and order.
  • Semi-structured interviews : A few questions are predetermined, but other questions aren’t planned.
  • Unstructured interviews : None of the questions are predetermined.
  • Focus group interviews : The questions are presented to a group instead of one individual.

An unstructured interview is the most flexible type of interview, but it is not always the best fit for your research topic.

Unstructured interviews are best used when:

  • You are an experienced interviewer and have a very strong background in your research topic, since it is challenging to ask spontaneous, colloquial questions
  • Your research question is exploratory in nature. While you may have developed hypotheses, you are open to discovering new or shifting viewpoints through the interview process.
  • You are seeking descriptive data, and are ready to ask questions that will deepen and contextualise your initial thoughts and hypotheses
  • Your research depends on forming connections with your participants and making them feel comfortable revealing deeper emotions, lived experiences, or thoughts

A semi-structured interview is a blend of structured and unstructured types of interviews. Semi-structured interviews are best used when:

  • You have prior interview experience. Spontaneous questions are deceptively challenging, and it’s easy to accidentally ask a leading question or make a participant uncomfortable.
  • Your research question is exploratory in nature. Participant answers can guide future research questions and help you develop a more robust knowledge base for future research.

The interviewer effect is a type of bias that emerges when a characteristic of an interviewer (race, age, gender identity, etc.) influences the responses given by the interviewee.

There is a risk of an interviewer effect in all types of interviews , but it can be mitigated by writing really high-quality interview questions.

A structured interview is a data collection method that relies on asking questions in a set order to collect data on a topic. They are often quantitative in nature. Structured interviews are best used when:

  • You already have a very clear understanding of your topic. Perhaps significant research has already been conducted, or you have done some prior research yourself, but you already possess a baseline for designing strong structured questions.
  • You are constrained in terms of time or resources and need to analyse your data quickly and efficiently
  • Your research question depends on strong parity between participants, with environmental conditions held constant

More flexible interview options include semi-structured interviews , unstructured interviews , and focus groups .

When conducting research, collecting original data has significant advantages:

  • You can tailor data collection to your specific research aims (e.g., understanding the needs of your consumers or user testing your website).
  • You can control and standardise the process for high reliability and validity (e.g., choosing appropriate measurements and sampling methods ).

However, there are also some drawbacks: data collection can be time-consuming, labour-intensive, and expensive. In some cases, it’s more efficient to use secondary data that has already been collected by someone else, but the data might be less reliable.

Data collection is the systematic process by which observations or measurements are gathered in research. It is used in many different contexts by academics, governments, businesses, and other organisations.

A mediator variable explains the process through which two variables are related, while a moderator variable affects the strength and direction of that relationship.

A confounder is a third variable that affects variables of interest and makes them seem related when they are not. In contrast, a mediator is the mechanism of a relationship between two variables: it explains the process by which they are related.

If something is a mediating variable :

  • It’s caused by the independent variable
  • It influences the dependent variable
  • When it’s taken into account, the statistical correlation between the independent and dependent variables is higher than when it isn’t considered

Including mediators and moderators in your research helps you go beyond studying a simple relationship between two variables for a fuller picture of the real world. They are important to consider when studying complex correlational or causal relationships.

Mediators are part of the causal pathway of an effect, and they tell you how or why an effect takes place. Moderators usually help you judge the external validity of your study by identifying the limitations of when the relationship between variables holds.

You can think of independent and dependent variables in terms of cause and effect: an independent variable is the variable you think is the cause , while a dependent variable is the effect .

In an experiment, you manipulate the independent variable and measure the outcome in the dependent variable. For example, in an experiment about the effect of nutrients on crop growth:

  • The  independent variable  is the amount of nutrients added to the crop field.
  • The  dependent variable is the biomass of the crops at harvest time.

Defining your variables, and deciding how you will manipulate and measure them, is an important part of experimental design .

Discrete and continuous variables are two types of quantitative variables :

  • Discrete variables represent counts (e.g., the number of objects in a collection).
  • Continuous variables represent measurable amounts (e.g., water volume or weight).

Quantitative variables are any variables where the data represent amounts (e.g. height, weight, or age).

Categorical variables are any variables where the data represent groups. This includes rankings (e.g. finishing places in a race), classifications (e.g. brands of cereal), and binary outcomes (e.g. coin flips).

You need to know what type of variables you are working with to choose the right statistical test for your data and interpret your results .

Determining cause and effect is one of the most important parts of scientific research. It’s essential to know which is the cause – the independent variable – and which is the effect – the dependent variable.

You want to find out how blood sugar levels are affected by drinking diet cola and regular cola, so you conduct an experiment .

  • The type of cola – diet or regular – is the independent variable .
  • The level of blood sugar that you measure is the dependent variable – it changes depending on the type of cola.

No. The value of a dependent variable depends on an independent variable, so a variable cannot be both independent and dependent at the same time. It must be either the cause or the effect, not both.

Yes, but including more than one of either type requires multiple research questions .

For example, if you are interested in the effect of a diet on health, you can use multiple measures of health: blood sugar, blood pressure, weight, pulse, and many more. Each of these is its own dependent variable with its own research question.

You could also choose to look at the effect of exercise levels as well as diet, or even the additional effect of the two combined. Each of these is a separate independent variable .

To ensure the internal validity of an experiment , you should only change one independent variable at a time.

To ensure the internal validity of your research, you must consider the impact of confounding variables. If you fail to account for them, you might over- or underestimate the causal relationship between your independent and dependent variables , or even find a causal relationship where none exists.

A confounding variable is closely related to both the independent and dependent variables in a study. An independent variable represents the supposed cause , while the dependent variable is the supposed effect . A confounding variable is a third variable that influences both the independent and dependent variables.

Failing to account for confounding variables can cause you to wrongly estimate the relationship between your independent and dependent variables.

There are several methods you can use to decrease the impact of confounding variables on your research: restriction, matching, statistical control, and randomisation.

In restriction , you restrict your sample by only including certain subjects that have the same values of potential confounding variables.

In matching , you match each of the subjects in your treatment group with a counterpart in the comparison group. The matched subjects have the same values on any potential confounding variables, and only differ in the independent variable .

In statistical control , you include potential confounders as variables in your regression .

In randomisation , you randomly assign the treatment (or independent variable) in your study to a sufficiently large number of subjects, which allows you to control for all potential confounding variables.

In scientific research, concepts are the abstract ideas or phenomena that are being studied (e.g., educational achievement). Variables are properties or characteristics of the concept (e.g., performance at school), while indicators are ways of measuring or quantifying variables (e.g., yearly grade reports).

The process of turning abstract concepts into measurable variables and indicators is called operationalisation .

In statistics, ordinal and nominal variables are both considered categorical variables .

Even though ordinal data can sometimes be numerical, not all mathematical operations can be performed on them.

A control variable is any variable that’s held constant in a research study. It’s not a variable of interest in the study, but it’s controlled because it could influence the outcomes.

Control variables help you establish a correlational or causal relationship between variables by enhancing internal validity .

If you don’t control relevant extraneous variables , they may influence the outcomes of your study, and you may not be able to demonstrate that your results are really an effect of your independent variable .

‘Controlling for a variable’ means measuring extraneous variables and accounting for them statistically to remove their effects on other variables.

Researchers often model control variable data along with independent and dependent variable data in regression analyses and ANCOVAs . That way, you can isolate the control variable’s effects from the relationship between the variables of interest.

An extraneous variable is any variable that you’re not investigating that can potentially affect the dependent variable of your research study.

A confounding variable is a type of extraneous variable that not only affects the dependent variable, but is also related to the independent variable.

There are 4 main types of extraneous variables :

  • Demand characteristics : Environmental cues that encourage participants to conform to researchers’ expectations
  • Experimenter effects : Unintentional actions by researchers that influence study outcomes
  • Situational variables : Eenvironmental variables that alter participants’ behaviours
  • Participant variables : Any characteristic or aspect of a participant’s background that could affect study results

The difference between explanatory and response variables is simple:

  • An explanatory variable is the expected cause, and it explains the results.
  • A response variable is the expected effect, and it responds to other variables.

The term ‘ explanatory variable ‘ is sometimes preferred over ‘ independent variable ‘ because, in real-world contexts, independent variables are often influenced by other variables. This means they aren’t totally independent.

Multiple independent variables may also be correlated with each other, so ‘explanatory variables’ is a more appropriate term.

On graphs, the explanatory variable is conventionally placed on the x -axis, while the response variable is placed on the y -axis.

  • If you have quantitative variables , use a scatterplot or a line graph.
  • If your response variable is categorical, use a scatterplot or a line graph.
  • If your explanatory variable is categorical, use a bar graph.

A correlation is usually tested for two variables at a time, but you can test correlations between three or more variables.

An independent variable is the variable you manipulate, control, or vary in an experimental study to explore its effects. It’s called ‘independent’ because it’s not influenced by any other variables in the study.

Independent variables are also called:

  • Explanatory variables (they explain an event or outcome)
  • Predictor variables (they can be used to predict the value of a dependent variable)
  • Right-hand-side variables (they appear on the right-hand side of a regression equation)

A dependent variable is what changes as a result of the independent variable manipulation in experiments . It’s what you’re interested in measuring, and it ‘depends’ on your independent variable.

In statistics, dependent variables are also called:

  • Response variables (they respond to a change in another variable)
  • Outcome variables (they represent the outcome you want to measure)
  • Left-hand-side variables (they appear on the left-hand side of a regression equation)

Deductive reasoning is commonly used in scientific research, and it’s especially associated with quantitative research .

In research, you might have come across something called the hypothetico-deductive method . It’s the scientific method of testing hypotheses to check whether your predictions are substantiated by real-world data.

Deductive reasoning is a logical approach where you progress from general ideas to specific conclusions. It’s often contrasted with inductive reasoning , where you start with specific observations and form general conclusions.

Deductive reasoning is also called deductive logic.

Inductive reasoning is a method of drawing conclusions by going from the specific to the general. It’s usually contrasted with deductive reasoning, where you proceed from general information to specific conclusions.

Inductive reasoning is also called inductive logic or bottom-up reasoning.

In inductive research , you start by making observations or gathering data. Then, you take a broad scan of your data and search for patterns. Finally, you make general conclusions that you might incorporate into theories.

Inductive reasoning is a bottom-up approach, while deductive reasoning is top-down.

Inductive reasoning takes you from the specific to the general, while in deductive reasoning, you make inferences by going from general premises to specific conclusions.

There are many different types of inductive reasoning that people use formally or informally.

Here are a few common types:

  • Inductive generalisation : You use observations about a sample to come to a conclusion about the population it came from.
  • Statistical generalisation: You use specific numbers about samples to make statements about populations.
  • Causal reasoning: You make cause-and-effect links between different things.
  • Sign reasoning: You make a conclusion about a correlational relationship between different things.
  • Analogical reasoning: You make a conclusion about something based on its similarities to something else.

It’s often best to ask a variety of people to review your measurements. You can ask experts, such as other researchers, or laypeople, such as potential participants, to judge the face validity of tests.

While experts have a deep understanding of research methods , the people you’re studying can provide you with valuable insights you may have missed otherwise.

Face validity is important because it’s a simple first step to measuring the overall validity of a test or technique. It’s a relatively intuitive, quick, and easy way to start checking whether a new measure seems useful at first glance.

Good face validity means that anyone who reviews your measure says that it seems to be measuring what it’s supposed to. With poor face validity, someone reviewing your measure may be left confused about what you’re measuring and why you’re using this method.

Face validity is about whether a test appears to measure what it’s supposed to measure. This type of validity is concerned with whether a measure seems relevant and appropriate for what it’s assessing only on the surface.

Statistical analyses are often applied to test validity with data from your measures. You test convergent validity and discriminant validity with correlations to see if results from your test are positively or negatively related to those of other established tests.

You can also use regression analyses to assess whether your measure is actually predictive of outcomes that you expect it to predict theoretically. A regression analysis that supports your expectations strengthens your claim of construct validity .

When designing or evaluating a measure, construct validity helps you ensure you’re actually measuring the construct you’re interested in. If you don’t have construct validity, you may inadvertently measure unrelated or distinct constructs and lose precision in your research.

Construct validity is often considered the overarching type of measurement validity ,  because it covers all of the other types. You need to have face validity , content validity, and criterion validity to achieve construct validity.

Construct validity is about how well a test measures the concept it was designed to evaluate. It’s one of four types of measurement validity , which includes construct validity, face validity , and criterion validity.

There are two subtypes of construct validity.

  • Convergent validity : The extent to which your measure corresponds to measures of related constructs
  • Discriminant validity: The extent to which your measure is unrelated or negatively related to measures of distinct constructs

Attrition bias can skew your sample so that your final sample differs significantly from your original sample. Your sample is biased because some groups from your population are underrepresented.

With a biased final sample, you may not be able to generalise your findings to the original population that you sampled from, so your external validity is compromised.

There are seven threats to external validity : selection bias , history, experimenter effect, Hawthorne effect , testing effect, aptitude-treatment, and situation effect.

The two types of external validity are population validity (whether you can generalise to other groups of people) and ecological validity (whether you can generalise to other situations and settings).

The external validity of a study is the extent to which you can generalise your findings to different groups of people, situations, and measures.

Attrition bias is a threat to internal validity . In experiments, differential rates of attrition between treatment and control groups can skew results.

This bias can affect the relationship between your independent and dependent variables . It can make variables appear to be correlated when they are not, or vice versa.

Internal validity is the extent to which you can be confident that a cause-and-effect relationship established in a study cannot be explained by other factors.

There are eight threats to internal validity : history, maturation, instrumentation, testing, selection bias , regression to the mean, social interaction, and attrition .

A sampling error is the difference between a population parameter and a sample statistic .

A statistic refers to measures about the sample , while a parameter refers to measures about the population .

Populations are used when a research question requires data from every member of the population. This is usually only feasible when the population is small and easily accessible.

Systematic sampling is a probability sampling method where researchers select members of the population at a regular interval – for example, by selecting every 15th person on a list of the population. If the population is in a random order, this can imitate the benefits of simple random sampling .

There are three key steps in systematic sampling :

  • Define and list your population , ensuring that it is not ordered in a cyclical or periodic order.
  • Decide on your sample size and calculate your interval, k , by dividing your population by your target sample size.
  • Choose every k th member of the population as your sample.

Yes, you can create a stratified sample using multiple characteristics, but you must ensure that every participant in your study belongs to one and only one subgroup. In this case, you multiply the numbers of subgroups for each characteristic to get the total number of groups.

For example, if you were stratifying by location with three subgroups (urban, rural, or suburban) and marital status with five subgroups (single, divorced, widowed, married, or partnered), you would have 3 × 5 = 15 subgroups.

You should use stratified sampling when your sample can be divided into mutually exclusive and exhaustive subgroups that you believe will take on different mean values for the variable that you’re studying.

Using stratified sampling will allow you to obtain more precise (with lower variance ) statistical estimates of whatever you are trying to measure.

For example, say you want to investigate how income differs based on educational attainment, but you know that this relationship can vary based on race. Using stratified sampling, you can ensure you obtain a large enough sample from each racial group, allowing you to draw more precise conclusions.

In stratified sampling , researchers divide subjects into subgroups called strata based on characteristics that they share (e.g., race, gender, educational attainment).

Once divided, each subgroup is randomly sampled using another probability sampling method .

Multistage sampling can simplify data collection when you have large, geographically spread samples, and you can obtain a probability sample without a complete sampling frame.

But multistage sampling may not lead to a representative sample, and larger samples are needed for multistage samples to achieve the statistical properties of simple random samples .

In multistage sampling , you can use probability or non-probability sampling methods.

For a probability sample, you have to probability sampling at every stage. You can mix it up by using simple random sampling , systematic sampling , or stratified sampling to select units at different stages, depending on what is applicable and relevant to your study.

Cluster sampling is a probability sampling method in which you divide a population into clusters, such as districts or schools, and then randomly select some of these clusters as your sample.

The clusters should ideally each be mini-representations of the population as a whole.

There are three types of cluster sampling : single-stage, double-stage and multi-stage clustering. In all three types, you first divide the population into clusters, then randomly select clusters for use in your sample.

  • In single-stage sampling , you collect data from every unit within the selected clusters.
  • In double-stage sampling , you select a random sample of units from within the clusters.
  • In multi-stage sampling , you repeat the procedure of randomly sampling elements from within the clusters until you have reached a manageable sample.

Cluster sampling is more time- and cost-efficient than other probability sampling methods , particularly when it comes to large samples spread across a wide geographical area.

However, it provides less statistical certainty than other methods, such as simple random sampling , because it is difficult to ensure that your clusters properly represent the population as a whole.

If properly implemented, simple random sampling is usually the best sampling method for ensuring both internal and external validity . However, it can sometimes be impractical and expensive to implement, depending on the size of the population to be studied,

If you have a list of every member of the population and the ability to reach whichever members are selected, you can use simple random sampling.

The American Community Survey  is an example of simple random sampling . In order to collect detailed data on the population of the US, the Census Bureau officials randomly select 3.5 million households per year and use a variety of methods to convince them to fill out the survey.

Simple random sampling is a type of probability sampling in which the researcher randomly selects a subset of participants from a population . Each member of the population has an equal chance of being selected. Data are then collected from as large a percentage as possible of this random subset.

Sampling bias occurs when some members of a population are systematically more likely to be selected in a sample than others.

In multistage sampling , or multistage cluster sampling, you draw a sample from a population using smaller and smaller groups at each stage.

This method is often used to collect data from a large, geographically spread group of people in national surveys, for example. You take advantage of hierarchical groupings (e.g., from county to city to neighbourhood) to create a sample that’s less expensive and time-consuming to collect data from.

In non-probability sampling , the sample is selected based on non-random criteria, and not every member of the population has a chance of being included.

Common non-probability sampling methods include convenience sampling , voluntary response sampling, purposive sampling , snowball sampling , and quota sampling .

Probability sampling means that every member of the target population has a known chance of being included in the sample.

Probability sampling methods include simple random sampling , systematic sampling , stratified sampling , and cluster sampling .

Samples are used to make inferences about populations . Samples are easier to collect data from because they are practical, cost-effective, convenient, and manageable.

While a between-subjects design has fewer threats to internal validity , it also requires more participants for high statistical power than a within-subjects design .

Advantages:

  • Prevents carryover effects of learning and fatigue.
  • Shorter study duration.

Disadvantages:

  • Needs larger samples for high power.
  • Uses more resources to recruit participants, administer sessions, cover costs, etc.
  • Individual differences may be an alternative explanation for results.

In a factorial design, multiple independent variables are tested.

If you test two variables, each level of one independent variable is combined with each level of the other independent variable to create different conditions.

Yes. Between-subjects and within-subjects designs can be combined in a single study when you have two or more independent variables (a factorial design). In a mixed factorial design, one variable is altered between subjects and another is altered within subjects.

Within-subjects designs have many potential threats to internal validity , but they are also very statistically powerful .

  • Only requires small samples
  • Statistically powerful
  • Removes the effects of individual differences on the outcomes
  • Internal validity threats reduce the likelihood of establishing a direct relationship between variables
  • Time-related effects, such as growth, can influence the outcomes
  • Carryover effects mean that the specific order of different treatments affect the outcomes

Quasi-experimental design is most useful in situations where it would be unethical or impractical to run a true experiment .

Quasi-experiments have lower internal validity than true experiments, but they often have higher external validity  as they can use real-world interventions instead of artificial laboratory settings.

In experimental research, random assignment is a way of placing participants from your sample into different groups using randomisation. With this method, every member of the sample has a known or equal chance of being placed in a control group or an experimental group.

A quasi-experiment is a type of research design that attempts to establish a cause-and-effect relationship. The main difference between this and a true experiment is that the groups are not randomly assigned.

In a between-subjects design , every participant experiences only one condition, and researchers assess group differences between participants in various conditions.

In a within-subjects design , each participant experiences all conditions, and researchers test the same participants repeatedly for differences between conditions.

The word ‘between’ means that you’re comparing different conditions between groups, while the word ‘within’ means you’re comparing different conditions within the same group.

A confounding variable , also called a confounder or confounding factor, is a third variable in a study examining a potential cause-and-effect relationship.

A confounding variable is related to both the supposed cause and the supposed effect of the study. It can be difficult to separate the true effect of the independent variable from the effect of the confounding variable.

In your research design , it’s important to identify potential confounding variables and plan how you will reduce their impact.

Triangulation can help:

  • Reduce bias that comes from using a single method, theory, or investigator
  • Enhance validity by approaching the same topic with different tools
  • Establish credibility by giving you a complete picture of the research problem

But triangulation can also pose problems:

  • It’s time-consuming and labour-intensive, often involving an interdisciplinary team.
  • Your results may be inconsistent or even contradictory.

There are four main types of triangulation :

  • Data triangulation : Using data from different times, spaces, and people
  • Investigator triangulation : Involving multiple researchers in collecting or analysing data
  • Theory triangulation : Using varying theoretical perspectives in your research
  • Methodological triangulation : Using different methodologies to approach the same topic

Experimental designs are a set of procedures that you plan in order to examine the relationship between variables that interest you.

To design a successful experiment, first identify:

  • A testable hypothesis
  • One or more independent variables that you will manipulate
  • One or more dependent variables that you will measure

When designing the experiment, first decide:

  • How your variable(s) will be manipulated
  • How you will control for any potential confounding or lurking variables
  • How many subjects you will include
  • How you will assign treatments to your subjects

The key difference between observational studies and experiments is that, done correctly, an observational study will never influence the responses or behaviours of participants. Experimental designs will have a treatment condition applied to at least a portion of participants.

An observational study could be a good fit for your research if your research question is based on things you observe. If you have ethical, logistical, or practical concerns that make an experimental design challenging, consider an observational study. Remember that in an observational study, it is critical that there be no interference or manipulation of the research subjects. Since it’s not an experiment, there are no control or treatment groups either.

These are four of the most common mixed methods designs :

  • Convergent parallel: Quantitative and qualitative data are collected at the same time and analysed separately. After both analyses are complete, compare your results to draw overall conclusions. 
  • Embedded: Quantitative and qualitative data are collected at the same time, but within a larger quantitative or qualitative design. One type of data is secondary to the other.
  • Explanatory sequential: Quantitative data is collected and analysed first, followed by qualitative data. You can use this design if you think your qualitative data will explain and contextualise your quantitative findings.
  • Exploratory sequential: Qualitative data is collected and analysed first, followed by quantitative data. You can use this design if you think the quantitative data will confirm or validate your qualitative findings.

Triangulation in research means using multiple datasets, methods, theories and/or investigators to address a research question. It’s a research strategy that can help you enhance the validity and credibility of your findings.

Triangulation is mainly used in qualitative research , but it’s also commonly applied in quantitative research . Mixed methods research always uses triangulation.

Operationalisation means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioural avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalise the variables that you want to measure.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

There are five common approaches to qualitative research :

  • Grounded theory involves collecting data in order to develop new theories.
  • Ethnography involves immersing yourself in a group or organisation to understand its culture.
  • Narrative research involves interpreting stories to understand how people make sense of their experiences and perceptions.
  • Phenomenological research involves investigating phenomena through people’s lived experiences.
  • Action research links theory and practice in several cycles to drive innovative changes.

There are various approaches to qualitative data analysis , but they all share five steps in common:

  • Prepare and organise your data.
  • Review and explore your data.
  • Develop a data coding system.
  • Assign codes to the data.
  • Identify recurring themes.

The specifics of each step depend on the focus of the analysis. Some common approaches include textual analysis , thematic analysis , and discourse analysis .

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

Methodology refers to the overarching strategy and rationale of your research project . It involves studying the methods used in your field and the theories or principles behind them, in order to develop an approach that matches your objectives.

Methods are the specific tools and procedures you use to collect and analyse data (e.g. experiments, surveys , and statistical tests ).

In shorter scientific papers, where the aim is to report the findings of a specific study, you might simply describe what you did in a methods section .

In a longer or more complex research project, such as a thesis or dissertation , you will probably include a methodology section , where you explain your approach to answering the research questions and cite relevant sources to support your choice of methods.

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts, and meanings, use qualitative methods .
  • If you want to analyse a large amount of readily available data, use secondary data. If you want data specific to your purposes with control over how they are generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

Ask our team

Want to contact us directly? No problem. We are always here for you.

Support team - Nina

Our support team is here to help you daily via chat, WhatsApp, email, or phone between 9:00 a.m. to 11:00 p.m. CET.

Our APA experts default to APA 7 for editing and formatting. For the Citation Editing Service you are able to choose between APA 6 and 7.

Yes, if your document is longer than 20,000 words, you will get a sample of approximately 2,000 words. This sample edit gives you a first impression of the editor’s editing style and a chance to ask questions and give feedback.

How does the sample edit work?

You will receive the sample edit within 24 hours after placing your order. You then have 24 hours to let us know if you’re happy with the sample or if there’s something you would like the editor to do differently.

Read more about how the sample edit works

Yes, you can upload your document in sections.

We try our best to ensure that the same editor checks all the different sections of your document. When you upload a new file, our system recognizes you as a returning customer, and we immediately contact the editor who helped you before.

However, we cannot guarantee that the same editor will be available. Your chances are higher if

  • You send us your text as soon as possible and
  • You can be flexible about the deadline.

Please note that the shorter your deadline is, the lower the chance that your previous editor is not available.

If your previous editor isn’t available, then we will inform you immediately and look for another qualified editor. Fear not! Every Scribbr editor follows the  Scribbr Improvement Model  and will deliver high-quality work.

Yes, our editors also work during the weekends and holidays.

Because we have many editors available, we can check your document 24 hours per day and 7 days per week, all year round.

If you choose a 72 hour deadline and upload your document on a Thursday evening, you’ll have your thesis back by Sunday evening!

Yes! Our editors are all native speakers, and they have lots of experience editing texts written by ESL students. They will make sure your grammar is perfect and point out any sentences that are difficult to understand. They’ll also notice your most common mistakes, and give you personal feedback to improve your writing in English.

Every Scribbr order comes with our award-winning Proofreading & Editing service , which combines two important stages of the revision process.

For a more comprehensive edit, you can add a Structure Check or Clarity Check to your order. With these building blocks, you can customize the kind of feedback you receive.

You might be familiar with a different set of editing terms. To help you understand what you can expect at Scribbr, we created this table:

Types of editing Available at Scribbr?


This is the “proofreading” in Scribbr’s standard service. It can only be selected in combination with editing.


This is the “editing” in Scribbr’s standard service. It can only be selected in combination with proofreading.


Select the Structure Check and Clarity Check to receive a comprehensive edit equivalent to a line edit.


This kind of editing involves heavy rewriting and restructuring. Our editors cannot help with this.

View an example

When you place an order, you can specify your field of study and we’ll match you with an editor who has familiarity with this area.

However, our editors are language specialists, not academic experts in your field. Your editor’s job is not to comment on the content of your dissertation, but to improve your language and help you express your ideas as clearly and fluently as possible.

This means that your editor will understand your text well enough to give feedback on its clarity, logic and structure, but not on the accuracy or originality of its content.

Good academic writing should be understandable to a non-expert reader, and we believe that academic editing is a discipline in itself. The research, ideas and arguments are all yours – we’re here to make sure they shine!

After your document has been edited, you will receive an email with a link to download the document.

The editor has made changes to your document using ‘Track Changes’ in Word. This means that you only have to accept or ignore the changes that are made in the text one by one.

It is also possible to accept all changes at once. However, we strongly advise you not to do so for the following reasons:

  • You can learn a lot by looking at the mistakes you made.
  • The editors don’t only change the text – they also place comments when sentences or sometimes even entire paragraphs are unclear. You should read through these comments and take into account your editor’s tips and suggestions.
  • With a final read-through, you can make sure you’re 100% happy with your text before you submit!

You choose the turnaround time when ordering. We can return your dissertation within 24 hours , 3 days or 1 week . These timescales include weekends and holidays. As soon as you’ve paid, the deadline is set, and we guarantee to meet it! We’ll notify you by text and email when your editor has completed the job.

Very large orders might not be possible to complete in 24 hours. On average, our editors can complete around 13,000 words in a day while maintaining our high quality standards. If your order is longer than this and urgent, contact us to discuss possibilities.

Always leave yourself enough time to check through the document and accept the changes before your submission deadline.

Scribbr is specialised in editing study related documents. We check:

  • Graduation projects
  • Dissertations
  • Admissions essays
  • College essays
  • Application essays
  • Personal statements
  • Process reports
  • Reflections
  • Internship reports
  • Academic papers
  • Research proposals
  • Prospectuses

Calculate the costs

The fastest turnaround time is 24 hours.

You can upload your document at any time and choose between four deadlines:

At Scribbr, we promise to make every customer 100% happy with the service we offer. Our philosophy: Your complaint is always justified – no denial, no doubts.

Our customer support team is here to find the solution that helps you the most, whether that’s a free new edit or a refund for the service.

Yes, in the order process you can indicate your preference for American, British, or Australian English .

If you don’t choose one, your editor will follow the style of English you currently use. If your editor has any questions about this, we will contact you.

Pediaa.Com

Home » Education » What is the Difference Between Explanatory and Exploratory Research

What is the Difference Between Explanatory and Exploratory Research

The main difference between explanatory and exploratory research is that explanatory research explains why certain phenomena work in the way that they do, whereas exploratory research explores and investigates a problem that is not clearly defined.

Explanatory and exploratory research are two types of research that are important in analyzing problems. A researcher conducts exploratory research when he or she has just begun researching and wants to understand and explore the topic generally. A researcher will use explanatory research when he or she wants to explain why a certain phenomenon happens.

Key Areas Covered

1.  What is Explanatory Research      – Definition, Features, Types 2.  What is Exploratory Research      – Definition, Features 3. Difference Between Explanatory vs Exploratory Research      – Comparison of Key Differences

Difference Between Explanatory and Exploratory Research - Comparison Summary

What is Explanatory Research

Explanatory research is an attempt to explain why certain phenomena work in the way that they do. We use the term explanatory research to identify research studies that answer this ‘why question’.  This type of research study attempts to link different ideas to understand the nature of cause-and-effect relationships. In other words, explanatory research analyzes specific problems and explains the patterns of relationships between variables. However, it’s important to know that most research studies start from exploratory research, descriptive research, and then explanatory research.

For example, exploratory research will explore the general phenomenon of students failing an exam; descriptive research will describe how many students have failed the exam, while explanatory research will analyze why students failed the exam. Similarly, if someone says they are carrying out an explanatory study on student’s addiction to smartphones, that study will mainly explain the reasons behind students’ addiction or factors that contribute to the addiction.

Explanatory vs Exploratory Research

Types of Explanatory Research

The most common types of explanatory research involve in-depth interviews, literature research, case studies , and focus group research. Interviews usually involve an expert in the field who can explain the phenomena under investigation. Literature research, on the other hand, involves searching information from journal articles , newspapers, and other relevant sources.

What is Exploratory Research

Exploratory research, as its name suggests, is an attempt to explore and investigate a problem that is not clearly defined. It merely explores the research problem and does not offer final or conclusive solutions to existing problems. In this type of research, the researcher starts with general ideas to get an idea about how to best approach the research subjects, what methods to use, and what type of data to gather. Researchers usually conduct this type of research when they want to test the feasibility of conducting an extensive study on a particular topic. This type of research is typically conducted for problems at a preliminary stage. Furthermore, in this type of research, the researcher should be willing to change his direction according to new insights or data he gains.

There are different types of exploratory research methods. Primary research methods involve surveys, polls, interviews, focus groups, and observations, whereas secondary research methods involve online research, literature research and case study research. Overall exploratory research studies do not have a proper structure and involve several general steps, including identifying the problem, creating the hypothesis, and further research.

Difference Between Explanatory and Exploratory Research

Explanatory research is a type of research that attempts to explain why certain phenomena work in the way that they do. Exploratory research, on the other hand, is a type of research that attempts to explore and investigate a problem that is not clearly defined.

While explanatory research links different ideas to understand the nature of cause-and-effect relationships in order to explain why certain phenomena occur, exploratory research explores the research problem but does not offer final or conclusive solutions to existing problems.

Explanatory research is usually conducted after exploratory research and descriptive research, whereas exploratory research is conducted at the preliminary stage.

1. DeCarlo, Matthew. “ 7.1 Types of Research .” Scientific Inquiry in Social Work, Open Social Work Education. 2. Consultores, Bastis. “ The Importance of Explanatory Research .” Online Tesis.

Image Courtesy:

1. “ Research Scene Vector ” By Videoplasty.com (CC BY-SA 4.0) via Commons Wikimedia

' src=

About the Author: Hasa

Hasanthi is a seasoned content writer and editor with over 8 years of experience. Armed with a BA degree in English and a knack for digital marketing, she explores her passions for literature, history, culture, and food through her engaging and informative writing.

​You May Also Like These

Leave a reply cancel reply.

  • Philosophy of Art
  • Interpretation

Descriptive, Explanatory, and Interpretive Approaches

  • In book: Research Methods in the Social Sciences (pp.81-85)
  • Publisher: Oxford University Press

Louis M. Imbeau at Université Laval

  • Université Laval
  • This person is not on ResearchGate, or hasn't claimed this research yet.

Yasmina Malki at Université Laval

Discover the world's research

  • 25+ million members
  • 160+ million publication pages
  • 2.3+ billion citations

Cletus Famous Nwankwo

  • Gustavo Gabriel Santafé

Félix Mathieu

  • Claude Dubar
  • Jean-Michel Berthelot
  • James J. O'Connor
  • Barrington Jr. Moore
  • Roberto Perotti
  • Aaron B. Wildavsky
  • Steven Williams Maynard-Moody

Michael Musheno

  • Recruit researchers
  • Join for free
  • Login Email Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google Welcome back! Please log in. Email · Hint Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google No account? Sign up
  • Scroll to top
  • Dark Light Dark Light

SurveyPoint

Explanatory vs Exploratory Research- What’s the Difference?

  • Author Survey Point Team
  • Published July 6, 2023

Explanatory vs Exploratory Research- What’s the Difference?

The way researchers conduct their studies has advanced in recent years. New methodologies have emerged that now provide a better view of the population and their behavior. Explanatory, descriptive, and exploratory research are the three most popular types of research among researchers.

Even though these techniques may sound similar to you, they differ significantly in a number of ways. Each of these research types serves a specific function and has a specific application. Therefore how you plan the research project will be heavily influenced by this choice.

Today we will examine the difference between exploratory, descriptive, and explanatory research types. We will primarily focus on explanatory and exploratory research and look at their key examples. But before diving deep into their differences, let us try to understand the meaning of these research types. 

Table of Contents

Explanatory Research

The explanatory research method tries to explain the phenomenon that is being studied. This type of research essentially answers the question of ‘why.’ It uses different ideas and concepts to establish a cause-and-effect relationship . The relationship highlights the factors and causes behind the occurrence of a particular incident. It helps us identify the problems that need to be solved.

This research method is used when a specific phenomenon is observed and defined. Then the explanatory research tries to discover why and how the phenomenon happened. It tests the already established hypothesis. 

Largely, this type of research uses quantitative data. The data used is secondary in nature as it is not collected from a primary or direct source. 

Exploratory Research

exploratory vs explanatory vs descriptive research

Exploratory research is a type of early-stage study. It aims to analyze and explore an issue that still needs to be defined. Very little to no prior literature is available to guide the research’s direction in the chosen research topic. 

This preliminary research method tries to find and develop the most efficient process , data collection procedure, and analytical tools. However, it does not offer any definite conclusions or findings. 

This research technique evaluates if a certain phenomenon is capable of further investigation in terms of its scope and feasibility. It requires a comprehensive inquiry. Such exploratory research serves as a foundation for later research as well.

One of the most confusing questions frequently asked is: Is exploratory research qualitative or quantitative? 

Since exploratory research aims to develop fresh hypotheses and ideas that can direct future studies, it typically uses qualitative data collection methods. However, quantitative data collection methods, like surveys, can also be used in exploratory research to collect primary information that can help future research. 

SurveyPoint can help you build comprehensive surveys that are easy to float and collect responses. You can custom-build the template and make it relevant to your industry. 

Descriptive Research

When research is concerned with describing a phenomenon and its characteristics, the descriptive research method is used. It is very popular in market research for describing the features of a target population. 

This type of research aims to describe patterns. Qualitative and quantitative both types of data can be used in this research methodology. An example of descriptive research can be a study that describes the demographic features of a particular population. 

Explanatory Research vs Exploratory Research

Now let us look at the major differences between explanatory and exploratory research. 

  • Different Phases of Study

Explanatory research is conducted when the phenomenon is defined and the hypothesis is already established. This is the latter phase of the research. On the other hand, exploratory research is the initial phase where a new phenomenon is being observed and explored.

  • Framework and Structure

The exploratory research does not have any strict framework or structure. You can choose whichever method suits you best. However, the explanatory research method is very systematic and structured in a proper manner. 

It is very much possible that the exploratory theory may not provide any definite conclusion or result. However, explanatory research provides answers by connecting multiple data points to independent variables. 

  • Research Method

Both these techniques use different research methods as their objectives are different. Explanatory research moves forward by collecting data that confirms or contradicts a preconceived hypothesis, whereas exploratory research employs questioning mechanisms to uncover the best practices.

Explanatory vs Exploratory Research Examples

Assume that a researcher wants to study caffeine’s effect on adults’ sleep quality. They randomly select subjects for their experiment. The selected sample had to drink either a caffeinated or a non-caffeinated beverage before bed every day. 

The researcher leverages a standardized questionnaire to assess the participants’ sleep quality. The study aims to demonstrate a causal link between coffee consumption and sleep quality.

Now suppose that researchers want to study why people buy a particular coffee brand. They will collect data from coffee consumers through different methods to explore their attitudes and opinion toward different coffee labels. The study aims to collect data and pinpoint potential research questions or hypotheses in this research scenario.

Similarities Between Exploratory and Explanatory Research

Apart from their differences, there are some similarities between exploratory and explanatory research as well. The most prominent similarity between the two is that both use scientific data collection methods and scientific analysis. Additionally, both exploratory and explanatory research can result in new research questions or hypotheses that can direct future investigations and advance our understanding of a subject.

You must first understand your exact research question, the nature of the phenomena being studied, and the resources you have at your disposal. These will help you determine which research technique can be a better fit based on your goals. Ultimately, the type of research methodology to choose can have a grave impact on your overall research process. 

Survey Point Team

Recent posts.

cyber crime

  • Posted by Survey Point Team

How To Create Awareness Against Cyber Crime

Python

Everything You Need To Know About Python

Innovations

All You Need To Know About Innovations Shaping India's Future

exploratory vs explanatory vs descriptive research

IMAGES

  1. Exploratory Descriptive and Explanatory Research

    exploratory vs explanatory vs descriptive research

  2. Comparison of Exploratory research, Descriptive research and

    exploratory vs explanatory vs descriptive research

  3. Exploratory vs. Explanatory Research

    exploratory vs explanatory vs descriptive research

  4. Exploratory Research vs Explanatory Research

    exploratory vs explanatory vs descriptive research

  5. Types of Research in Research Methodology| Descriptive| Explanatory| Exploratory| Correlation

    exploratory vs explanatory vs descriptive research

  6. Exploratory Descriptive and Explanatory Research

    exploratory vs explanatory vs descriptive research

VIDEO

  1. TYPES OF RESEARCH : Quick Review (Comprehensive Exam Reviewer)

  2. Exploratory, Explanatory & Descriptive Research #ResearchMethodology #ugcnet

  3. #SPSM Chats Predictive vs. Explanatory Models

  4. EXPLORATORY, DESCRIPTIVE AND EXPLANATORY RESEARCH

  5. MEC 109|Exploratory Research Vs Descriptive Research|M.A.ECO IGNOU @SHIVclasseseconomics

  6. RESEARCH DESIGN

COMMENTS

  1. 3.2 Exploration, Description, Explanation

    In fact, descriptive research has many useful applications, and you probably rely on findings from descriptive research without even being aware that that is what you are doing. See Table 3.1 for examples. Explanatory Research. The third type of research, explanatory research, seeks to answer "why" questions.

  2. Difference Between Exploratory and Descriptive Research

    Exploratory research is one which aims at providing insights into and an understanding of the problem faced by the researcher. Descriptive research, on the other hand, aims at describing something, mainly functions and characteristics. The research design is defined as a framework for carrying out research activities in different fields of study.

  3. Exploratory Vs Explanatory Research

    Differences Between Exploratory and Explanatory Research. In summary, exploratory research is used to gain a deeper understanding of a research problem, while explanatory research is used to explain the relationship between variables or to test hypotheses. Both types of research are important and complement each other in the research process.

  4. Descriptive Research vs. Exploratory Research

    Descriptive research aims to provide a representative snapshot of a larger population, allowing for generalizations and predictions. Exploratory research, on the other hand, focuses on generating insights and hypotheses that can be further tested and refined. Its findings are often more specific and context-dependent.

  5. Types of Research Designs Compared

    You can also create a mixed methods research design that has elements of both. Descriptive research vs experimental research. Descriptive research gathers data without controlling any variables, while experimental research manipulates and controls variables to determine cause and effect.

  6. Explanatory Research

    Explanatory vs. exploratory research. It can be easy to confuse explanatory research with exploratory research. If you're in doubt about the relationship between exploratory and explanatory research, just remember that exploratory research lays the groundwork for later explanatory research. Exploratory research questions often begin with ...

  7. Exploratory Research

    Exploratory research is a methodology approach that investigates research questions that have not previously been studied in depth. Exploratory research is often qualitative and primary in nature. However, a study with a large sample conducted in an exploratory manner can be quantitative as well. It is also often referred to as interpretive ...

  8. Exploration, Description, Explanation

    16. Exploration, Description, Explanation. As you can see, there is much to think about and decisions to be made as you begin to think about your research question and your research project. Something else you will need to consider in the early stages is whether your research will be exploratory, descriptive, or explanatory.

  9. Types of Research Designs Compared

    You can also create a mixed methods research design that has elements of both. Descriptive vs experimental. Descriptive research gathers data without controlling any variables, while experimental research manipulates and controls variables to determine cause and effect. Do you want to identify characteristics, patterns, and correlations or test ...

  10. 3.2 Exploration, Description, Explanation

    In fact, descriptive research has many useful applications, and you probably rely on findings from descriptive research without even being aware that that is what you are doing. See Table 3.1 for examples. Explanatory research. The third type of research, explanatory research, seeks to answer "why" questions. In this case, the researcher is ...

  11. Exploratory Research

    Exploratory vs explanatory research. It can be easy to confuse exploratory research with explanatory research. To understand the relationship, it can help to remember that exploratory research lays the groundwork for later explanatory research. Exploratory research investigates research questions that have not been studied in depth. The ...

  12. 4.1 Types of research

    Key Takeaways. Exploratory research is usually conducted when a researcher has just begun an investigation and wishes to understand the topic generally. Descriptive research is research that aims to describe or define the topic at hand. Explanatory research is research that aims to explain why particular phenomena work in the way that they do.

  13. Explanatory Research

    Explanatory research is a type of research that aims to uncover the underlying causes and relationships between different variables. It seeks to explain why a particular phenomenon occurs and how it relates to other factors. This type of research is typically used to test hypotheses or theories and to establish cause-and-effect relationships.

  14. What is Explanatory Research? Definition and Examples

    Explanatory research: definition. Explanatory research is a technique used to gain a deeper understanding of the underlying reasons for, causes of, and relationships behind a particular phenomenon that has yet to be extensively studied. Researchers use this method to understand why and how a particular phenomenon occurs the way it does.

  15. Explanatory Research

    Explanatory vs exploratory research. It can be easy to confuse explanatory research with exploratory research. If you're in doubt about the relationship between exploratory and explanatory research, just remember that exploratory research lays the groundwork for later explanatory research. ... Descriptive research means observing and ...

  16. What's the difference between exploratory and explanatory research?

    Attrition refers to participants leaving a study. It always happens to some extent—for example, in randomized controlled trials for medical research. Differential attrition occurs when attrition or dropout rates differ systematically between the intervention and the control group.As a result, the characteristics of the participants who drop out differ from the characteristics of those who ...

  17. Explanatory Research

    Exploratory research is unstructured with no pre-planned design for analysis and is generally filled up by either descriptive or explanatory research. Exploratory research is conducted by first ...

  18. 7.1 Types of research

    Key Takeaways. Exploratory research is usually conducted when a researcher has just begun an investigation and wishes to understand the topic generally. Descriptive research aims to describe or define the topic at hand. Explanatory research is aims to explain why particular phenomena work in the way that they do.

  19. What's the difference between exploratory and explanatory research?

    Face validity and content validity are similar in that they both evaluate how suitable the content of a test is. The difference is that face validity is subjective, and assesses content at surface level.. When a test has strong face validity, anyone would agree that the test's questions appear to measure what they are intended to measure.. For example, looking at a 4th grade math test ...

  20. What is the Difference Between Explanatory and Exploratory Research

    by Hasa. 4 min read. The main difference between explanatory and exploratory research is that explanatory research explains why certain phenomena work in the way that they do, whereas exploratory research explores and investigates a problem that is not clearly defined. Explanatory and exploratory research are two types of research that are ...

  21. Exploratory, Explanatory, and Descriptive Research

    The official definition says that exploratory research is the initial investigation of a hypothetical or theoretical idea of the phenomena you observe. As the name implies, in exploratory research, the primary idea is to explore. Typically, this sort of study moves in both directions. A well-defined area of inquiry can be applied to a newly ...

  22. Descriptive, Explanatory, and Interpretive Approaches

    This chapter assesses descriptive, explanatory, and interpretive approaches. 'Description', 'explanation', and 'interpretation' are distinct stages of the research process. Description ...

  23. Explanatory vs Exploratory Research- What's the Difference?

    Explanatory Research vs Exploratory Research. Now let us look at the major differences between explanatory and exploratory research. Different Phases of Study; Explanatory research is conducted when the phenomenon is defined and the hypothesis is already established. This is the latter phase of the research.