• Member login
  • Pre-algebra lessons
  • Pre-algebra word problems
  • Algebra lessons
  • Algebra word problems
  • Algebra proofs
  • Advanced algebra
  • Geometry lessons
  • Geometry word problems
  • Geometry proofs
  • Trigonometry lessons
  • Consumer math
  • Baseball math
  • Math for nurses
  • Statistics made easy
  • High school physics
  • Basic mathematics store
  • SAT Math Prep
  • Math skills by grade level
  • Ask an expert
  • Other websites
  • K-12 worksheets
  • Worksheets generator
  • Algebra worksheets
  • Geometry worksheets
  • Free math problem solver
  • Pre-algebra calculators
  • Algebra Calculators
  • Geometry Calculators
  • Math puzzles
  • Math tricks

Subtracting fractions word problems

Subtracting fractions word problems

Subtracting fractions word problems: 4 real-life examples.

Have a great basic math word problem.

Share it here with a very detailed solution!

Enter Your Title

Entering your basic math word problem is easy to do. Just type!...

Your problem will appear on a Web page exactly the way you enter it here. You can wrap a word in square brackets to make it appear bold. For example [my story] would show as on the Web page containing your word problem.

TIP: Since most people scan Web pages, include your best thoughts.

Do you have a picture to add? Great! Click the button and find it on your computer. Then select it.

Add a Picture/Graphic Caption (optional)  

Click here to upload more images (optional)

Author Information (optional)

To receive credit as the author, enter your information below.

Submit Your Contribution

  • Check box to agree to these   submission guidelines .
  • I am at least 16 years of age.
  • I understand and accept the privacy policy .
  • I understand that you will display my submission on your website.

(You can preview and edit on the next page)

What Other Visitors Have Said

Click below to see contributions from other visitors to this page...

Click here to write your own.

Adding fractions word problems

Applied math

Calculators.

100 Tough Algebra Word Problems. If you can solve these problems with no help, you must be a genius!

Math quizzes

 Recommended

About me :: Privacy policy :: Disclaimer :: Donate   Careers in mathematics  

Copyright © 2008-2021. Basic-mathematics.com. All right reserved

High Impact Tutoring Built By Math Experts

Personalized standards-aligned one-on-one math tutoring for schools and districts

In order to access this I need to be confident with:

Fraction word prob.

Fraction word problems

Here you will learn about fraction word problems, including solving math word problems within a real-world context involving adding fractions, subtracting fractions, multiplying fractions, and dividing fractions.

Students will first learn about fraction word problems as part of number and operations—fractions in 4 th grade.

What are fraction word problems?

Fraction word problems are math word problems involving fractions that require students to use problem-solving skills within the context of a real-world situation.

To solve a fraction word problem, you must understand the context of the word problem, what the unknown information is, and what operation is needed to solve it. Fraction word problems may require addition, subtraction, multiplication, or division of fractions.

After determining what operation is needed to solve the problem, you can apply the rules of adding, subtracting, multiplying, or dividing fractions to find the solution.

For example,

Natalie is baking 2 different batches of cookies. One batch needs \cfrac{3}{4} cup of sugar and the other batch needs \cfrac{2}{4} cup of sugar. How much sugar is needed to bake both batches of cookies?

You can follow these steps to solve the problem:

Fraction Word Problems 1 US

Step-by-step guide: Adding and subtracting fractions

Step-by-step guide: Adding fractions

Step-by-step guide: Subtracting fractions

Step-by-step guide: Multiplying and dividing fractions

Step-by-step guide: Multiplying fractions

Step-by-step guide: Dividing fractions

What are fraction word problems?

Common Core State Standards

How does this relate to 4 th grade math to 6 th grade math?

  • Grade 4: Number and Operations—Fractions (4.NF.B.3d) Solve word problems involving addition and subtraction of fractions referring to the same whole and having like denominators, e.g., by using visual fraction models and equations to represent the problem.
  • Grade 4: Number and Operations—Fractions (4.NF.B.4c) Solve word problems involving multiplication of a fraction by a whole number, e.g., by using visual fraction models and equations to represent the problem. For example, if each person at a party will eat \cfrac{3}{8} of a pound of roast beef, and there will be 5 people at the party, how many pounds of roast beef will be needed? Between what two whole numbers does your answer lie?
  • Grade 5: Number and Operations—Fractions (5.NF.A.2) Solve word problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators, e.g., by using visual fraction models or equations to represent the problem. Use benchmark fractions and number sense of fractions to estimate mentally and assess the reasonableness of answers. For example, recognize an incorrect result \cfrac{2}{5}+\cfrac{1}{2}=\cfrac{3}{7} by observing that \cfrac{3}{7}<\cfrac{1}{2} .
  • Grade 5: Number and Operations—Fractions (5.NF.B.6) Solve real world problems involving multiplication of fractions and mixed numbers, e.g., by using visual fraction models or equations to represent the problem.
  • Grade 5: Number and Operations—Fractions (5.NF.B.7c) Solve real world problems involving division of unit fractions by non-zero whole numbers and division of whole numbers by unit fractions, e.g., by using visual fraction models and equations to represent the problem. For example, how much chocolate will each person get if 3 people share \cfrac{1}{2} \: lb of chocolate equally? How many \cfrac{1}{3} cup servings are in 2 cups of raisins?
  • Grade 6: The Number System (6.NS.A.1) Interpret and compute quotients of fractions, and solve word problems involving division of fractions by fractions, e.g., by using visual fraction models and equations to represent the problem. For example, create a story context for \cfrac{2}{3} \div \cfrac{4}{5} and use a visual fraction model to show the quotient; use the relationship between multiplication and division to explain that \cfrac{2}{3} \div \cfrac{4}{5}=\cfrac{8}{9} because \cfrac{3}{4} of \cfrac{8}{9} is \cfrac{2}{3}. (In general, \cfrac{a}{b} \div \cfrac{c}{d}=\cfrac{a d}{b c} \, ) How much chocolate will each person get if 3 people share \cfrac{1}{2} \: lb of chocolate equally? How many \cfrac{3}{4} cup servings are in \cfrac{2}{3} of a cup of yogurt? How wide is a rectangular strip of land with length \cfrac{3}{4} \: m and area \cfrac{1}{2} \: m^2?

[FREE] Fraction Operations Worksheet (Grade 4 to 6)

[FREE] Fraction Operations Worksheet (Grade 4 to 6)

Use this quiz to check your grade 4 to 6 students’ understanding of fraction operations. 10+ questions with answers covering a range of 4th to 6th grade fraction operations topics to identify areas of strength and support!

How to solve fraction word problems

In order to solve fraction word problems:

Determine what operation is needed to solve.

Write an equation.

Solve the equation.

State your answer in a sentence.

Fraction word problem examples

Example 1: adding fractions (like denominators).

Julia ate \cfrac{3}{8} of a pizza and her brother ate \cfrac{2}{8} of the same pizza. How much of the pizza did they eat altogether?

The problem states how much pizza Julia ate and how much her brother ate. You need to find how much pizza Julia and her brother ate altogether , which means you need to add.

2 Write an equation.

3 Solve the equation.

To add fractions with like denominators, add the numerators and keep the denominators the same.

4 State your answer in a sentence.

The last step is to go back to the word problem and write a sentence to clearly say what the solution represents in the context of the problem.

Julia and her brother ate \cfrac{5}{8} of the pizza altogether.

Example 2: adding fractions (unlike denominators)

Tim ran \cfrac{5}{6} of a mile in the morning and \cfrac{1}{3} of a mile in the afternoon. How far did Tim run in total?

The problem states how far Tim ran in the morning and how far he ran in the afternoon. You need to find how far Tim ran in total , which means you need to add.

To add fractions with unlike denominators, first find a common denominator and then change the fractions accordingly before adding.

\cfrac{5}{6}+\cfrac{1}{3}= \, ?

The least common multiple of 6 and 3 is 6, so 6 can be the common denominator.

That means \cfrac{1}{3} will need to be changed so that its denominator is 6. To do this, multiply the numerator and the denominator by 2.

\cfrac{1 \times 2}{3 \times 2}=\cfrac{2}{6}

Now you can add the fractions and simplify the answer.

\cfrac{5}{6}+\cfrac{2}{6}=\cfrac{7}{6}=1 \cfrac{1}{6}

Tim ran a total of 1 \cfrac{1}{6} miles.

Example 3: subtracting fractions (like denominators)

Pia walked \cfrac{4}{7} of a mile to the park and \cfrac{3}{7} of a mile back home. How much farther did she walk to the park than back home?

The problem states how far Pia walked to the park and how far she walked home. Since you need to find the difference ( how much farther ) between the two distances, you need to subtract.

To subtract fractions with like denominators, subtract the numerators and keep the denominators the same.

\cfrac{4}{7}-\cfrac{3}{7}=\cfrac{1}{7}

Pia walked \cfrac{1}{7} of a mile farther to the park than back home.

Example 4: subtracting fractions (unlike denominators)

Henry bought \cfrac{7}{8} pound of beef from the grocery store. He used \cfrac{1}{3} of a pound of beef to make a hamburger. How much of the beef does he have left?

The problem states how much beef Henry started with and how much he used. Since you need to find how much he has left , you need to subtract.

To subtract fractions with unlike denominators, first find a common denominator and then change the fractions accordingly before subtracting.

\cfrac{7}{8}-\cfrac{1}{3}= \, ?

The least common multiple of 8 and 3 is 24, so 24 can be the common denominator.

That means both fractions will need to be changed so that their denominator is 24.

To do this, multiply the numerator and the denominator of each fraction by the same number so that it results in a denominator of 24. This will give you an equivalent fraction for each fraction in the problem.

\begin{aligned}&\cfrac{7 \times 3}{8 \times 3}=\cfrac{21}{24} \\\\ &\cfrac{1 \times 8}{3 \times 8}=\cfrac{8}{24} \end{aligned}

Now you can subtract the fractions.

\cfrac{21}{24}-\cfrac{8}{24}=\cfrac{13}{24}

Henry has \cfrac{13}{24} of a pound of beef left.

Example 5: multiplying fractions

Andre has \cfrac{3}{4} of a candy bar left. He gives \cfrac{1}{2} of the remaining bit of the candy bar to his sister. What fraction of the whole candy bar does Andre have left now?

It could be challenging to determine the operation needed for this problem; many students may automatically assume it is subtraction since you need to find how much of the candy bar is left.

However, since you know Andre started with a fraction of the candy bar and you need to find a fraction OF a fraction, you need to multiply.

The difference here is that Andre did NOT give his sister \cfrac{1}{2} of the candy bar, but he gave her \cfrac{1}{2} of \cfrac{3}{4} of a candy bar.

To solve the word problem, you can ask, “What is \cfrac{1}{2} of \cfrac{3}{4}? ” and set up the equation accordingly. Think of the multiplication sign as meaning “of.”

\cfrac{1}{2} \times \cfrac{3}{4}= \, ?

To multiply fractions, multiply the numerators and multiply the denominators.

\cfrac{1}{2} \times \cfrac{3}{4}=\cfrac{3}{8}

Andre gave \cfrac{1}{2} of \cfrac{3}{4} of a candy bar to his sister, which means he has \cfrac{1}{2} of \cfrac{3}{4} left. Therefore, Andre has \cfrac{3}{8} of the whole candy bar left.

Example 6: dividing fractions

Nia has \cfrac{7}{8} cup of trail mix. How many \cfrac{1}{4} cup servings can she make?

The problem states the total amount of trail mix Nia has and asks how many servings can be made from it.

To solve, you need to divide the total amount of trail mix (which is \cfrac{7}{8} cup) by the amount in each serving ( \cfrac{1}{4} cup) to find out how many servings she can make.

To divide fractions, multiply the dividend by the reciprocal of the divisor.

\begin{aligned}& \cfrac{7}{8} \div \cfrac{1}{4}= \, ? \\\\ & \downarrow \downarrow \downarrow \\\\ &\cfrac{7}{8} \times \cfrac{4}{1}=\cfrac{28}{8} \end{aligned}

You can simplify \cfrac{28}{8} to \cfrac{7}{2} and then 3 \cfrac{1}{2}.

Nia can make 3 \cfrac{1}{2} cup servings.

Teaching tips for fraction word problems

  • Encourage students to look for key words to help determine the operation needed to solve the problem. For example, subtracting fractions word problems might ask students to find “how much is left” or “how much more” one fraction is than another.
  • Provide students with an answer key to word problem worksheets to allow them to obtain immediate feedback on their solutions. Encourage students to attempt the problems independently first, then check their answers against the key to identify any mistakes and learn from them. This helps reinforce problem-solving skills and confidence.
  • Be sure to incorporate real-world situations into your math lessons. Doing so allows students to better understand the relevance of fractions in everyday life.
  • As students progress and build a strong foundational understanding of one-step fraction word problems, provide them with multi-step word problems that involve more than one operation to solve.
  • Take note that students will not divide a fraction by a fraction as shown above until 6 th grade (middle school), but they will divide a unit fraction by a whole number and a whole number by a fraction in 5 th grade (elementary school), where the same mathematical rules apply to solving.
  • There are many alternatives you can use in place of printable math worksheets to make practicing fraction word problems more engaging. Some examples are online math games and digital workbooks.

Easy mistakes to make

  • Misinterpreting the problem Misreading or misunderstanding the word problem can lead to solving for the wrong quantity or using the wrong operation.
  • Not finding common denominators When adding or subtracting fractions with unlike denominators, students may forget to find a common denominator, leading to an incorrect answer.
  • Forgetting to simplify Unless a problem specifically says not to simplify, fractional answers should always be written in simplest form.

Related fractions operations lessons

  • Fractions operations
  • Multiplicative inverse
  • Reciprocal math
  • Fractions as divisions

Practice fraction word problem questions

1. Malia spent \cfrac{5}{6} of an hour studying for a math test. Then she spent \cfrac{1}{3} of an hour reading. How much longer did she spend studying for her math test than reading?

Malia spent \cfrac{1}{2} of an hour longer studying for her math test than reading.

GCSE Quiz True

Malia spent \cfrac{5}{18} of an hour longer studying for her math test than reading.

GCSE Quiz False

Malia spent \cfrac{1}{2} of an hour longer reading than studying for her math test.

Malia spent 1 \cfrac{1}{6} of an hour longer studying for her math test than reading.

To find the difference between the amount of time Malia spent studying for her math test than reading, you need to subtract. Since the fractions have unlike denominators, you need to find a common denominator first.

You can use 6 as the common denominator, so \cfrac{1}{3} becomes \cfrac{3}{6}. Then you can subtract.

\cfrac{3}{6} can then be simplified to \cfrac{1}{2}.

Finally, you need to choose the answer that correctly answers the question within the context of the situation. Therefore, the correct answer is “Malia spent \cfrac{1}{2} of an hour longer studying for her math test than reading.”

2. A square garden is \cfrac{3}{4} of a meter wide and \cfrac{8}{9} of a meter long. What is its area?

The area of the garden is 1\cfrac{23}{36} square meters.

The area of the garden is \cfrac{27}{32} square meters.

The area of the garden is \cfrac{2}{3} square meters.

The perimeter of the garden is \cfrac{2}{3} meters.

To find the area of a square, you multiply the length and width. So to solve, you multiply the fractional lengths by mulitplying the numerators and multiplying the denominators.

\cfrac{24}{36} can be simplified to \cfrac{2}{3}. 

Therefore, the correct answer is “The area of the garden is \cfrac{2}{3} square meters.”

3. Zoe ate \cfrac{3}{8} of a small cake. Liam ate \cfrac{1}{8} of the same cake. How much more of the cake did Zoe eat than Liam?

Zoe ate \cfrac{3}{64} more of the cake than Liam.

Zoe ate \cfrac{1}{4} more of the cake than Liam.

Zoe ate \cfrac{1}{8} more of the cake than Liam.

Liam ate \cfrac{1}{4} more of the cake than Zoe.

To find how much more cake Zoe ate than Liam, you subtract. Since the fractions have the same denominator, you subtract the numerators and keep the denominator the same.

\cfrac{2}{8} can be simplified to \cfrac{1}{4}. 

Therefore, the correct answer is “Zoe ate \cfrac{1}{4} more of the cake than Liam.”

4. Lila poured \cfrac{11}{12} cup of pineapple and \cfrac{2}{3} cup of mango juice in a bottle. How many cups of juice did she pour into the bottle altogether?

Lila poured 1 \cfrac{7}{12} cups of juice in the bottle altogether.

Lila poured \cfrac{1}{4} cups of juice in the bottle altogether.

Lila poured \cfrac{11}{18} cups of juice in the bottle altogether.

Lila poured 1 \cfrac{3}{8} cups of juice in the bottle altogether.

To find the total amount of juice that Lila poured into the bottle, you need to add. Since the fractions have unlike denominators, you need to find a common denominator first.

You can use 12 as the common denominator, so \cfrac{2}{3} becomes \cfrac{8}{12}.  Then you can add.

\cfrac{19}{12} can be simplified to 1 \cfrac{7}{12}. 

Therefore, the correct answer is “Lila poured 1 \cfrac{7}{12} cups of juice in the bottle altogether.”

5. Killian used \cfrac{9}{10} of a gallon of paint to paint his living room and \cfrac{7}{10} of a gallon to paint his bedroom. How much paint did Killian use in all?

Killian used \cfrac{2}{10} gallons of paint in all.

Killian used \cfrac{1}{5} gallons of paint in all.

Killian used \cfrac{63}{100} gallons of paint in all.

Killian used 1 \cfrac{3}{5} gallons of paint in all.

To find the total amount of paint Killian used, you add the amount he used for the living room and the amount he used for the kitchen. Since the fractions have the same denominator, you add the numerators and keep the denominators the same.

\cfrac{16}{10} can be simplified to 1 \cfrac{6}{10} and then further simplified to 1 \cfrac{3}{5}.

Therefore, the correct answer is “Killian used 1 \cfrac{3}{5} gallons of paint in all.”

6. Evan pours \cfrac{4}{5} of a liter of orange juice evenly among some cups.

He put \cfrac{1}{10} of a liter into each cup. How many cups did Evan fill?

Evan filled \cfrac{2}{25} cups.

Evan filled 8 cups.

Evan filled \cfrac{9}{10} cups.

Evan filled 7 cups.

To find the number of cups Evan filled, you need to divide the total amount of orange juice by the amount being poured into each cup. To divide fractions, you mulitply the first fraction (the dividend) by the reciprocal of the second fraction (the divisor).

\cfrac{40}{5} can be simplifed to 8.

Therefore, the correct answer is “Evan filled 8 cups.”

Fraction word problems FAQs

Fraction word problems are math word problems involving fractions that require students to use problem-solving skills within the context of a real-world situation. Fraction word problems may involve addition, subtraction, multiplication, or division of fractions.

To solve fraction word problems, first you need to determine the operation. Then you can write an equation and solve the equation based on the arithmetic rules for that operation.

Fraction word problems and decimal word problems are similar because they both involve solving math problems within real-world contexts. Both types of problems require understanding the problem, determining the operation needed to solve it (addition, subtraction, multiplication, division), and solving it based on the arithmetic rules for that operation.

The next lessons are

Still stuck.

At Third Space Learning, we specialize in helping teachers and school leaders to provide personalized math support for more of their students through high-quality, online one-on-one math tutoring delivered by subject experts.

Each week, our tutors support thousands of students who are at risk of not meeting their grade-level expectations, and help accelerate their progress and boost their confidence.

One on one math tuition

Find out how we can help your students achieve success with our math tutoring programs .

[FREE] Common Core Practice Tests (3rd to 8th Grade)

Prepare for math tests in your state with these 3rd Grade to 8th Grade practice assessments for Common Core and state equivalents.

Get your 6 multiple choice practice tests with detailed answers to support test prep, created by US math teachers for US math teachers!

Privacy Overview

Solving Word Problems by Adding and Subtracting Fractions and Mixed Numbers

Learn how to solve fraction word problems with examples and interactive exercises.

Example 1: Rachel rode her bike for one-fifth of a mile on Monday and two-fifths of a mile on Tuesday. How many miles did she ride altogether?

Analysis: To solve this problem, we will add two fractions with like denominators.

Solution: 

Answer: Rachel rode her bike for three-fifths of a mile altogether.

Analysis: To solve this problem, we will subtract two fractions with unlike denominators.

Answer: Stefanie swam one-third of a lap farther in the morning.

Analysis: To solve this problem, we will add three fractions with unlike denominators. Note that the first is an improper fraction.

Answer: It took Nick three and one-fourth hours to complete his homework altogether.

Pizza

Analysis: To solve this problem, we will add two mixed numbers, with the fractional parts having like denominators.

Answer: Diego and his friends ate six pizzas in all.

Analysis: To solve this problem, we will subtract two mixed numbers, with the fractional parts having like denominators.

Answer: The Cocozzelli family took one-half more days to drive home.

Analysis: To solve this problem, we will add two mixed numbers, with the fractional parts having unlike denominators.

Answer: The warehouse has 21 and one-half meters of tape in all.

Analysis: To solve this problem, we will subtract two mixed numbers, with the fractional parts having unlike denominators.

Answer: The electrician needs to cut 13 sixteenths cm of wire.

Analysis: To solve this problem, we will subtract a mixed number from a whole number.

Answer: The carpenter needs to cut four and seven-twelfths feet of wood.

Summary: In this lesson we learned how to solve word problems involving addition and subtraction of fractions and mixed numbers. We used the following skills to solve these problems: 

  • Add fractions with like denominators.
  • Subtract fractions with like denominators.
  • Find the LCD.
  • Add fractions with unlike denominators.
  • Subtract fractions with unlike denominators.
  • Add mixed numbers with like denominators.
  • Subtract mixed numbers with like denominators.
  • Add mixed numbers with unlike denominators.
  • Subtract mixed numbers with unlike denominators.

Directions: Subtract the mixed numbers in each exercise below.  Be sure to simplify your result, if necessary.  Click once in an ANSWER BOX and type in your answer; then click ENTER. After you click ENTER, a message will appear in the RESULTS BOX to indicate whether your answer is correct or incorrect. To start over, click CLEAR.

Note: To write the fraction three-fourths, enter 3/4 into the form. To write the mixed number four and two-thirds, enter 4, a space, and then 2/3 into the form.


 

RESULTS BOX: 

  • Number Charts
  • Multiplication
  • Long division
  • Basic operations
  • Telling time
  • Place value
  • Roman numerals
  • Fractions & related
  • Add, subtract, multiply,   and divide fractions
  • Mixed numbers vs. fractions
  • Equivalent fractions
  • Prime factorization & factors
  • Fraction Calculator
  • Decimals & Percent
  • Add, subtract, multiply,   and divide decimals
  • Fractions to decimals
  • Percents to decimals
  • Percentage of a number
  • Percent word problems
  • Classify triangles
  • Classify quadrilaterals
  • Circle worksheets
  • Area & perimeter of rectangles
  • Area of triangles & polygons
  • Coordinate grid, including   moves & reflections
  • Volume & surface area
  • Pre-algebra
  • Square Roots
  • Order of operations
  • Scientific notation
  • Proportions
  • Ratio word problems
  • Write expressions
  • Evaluate expressions
  • Simplify expressions
  • Linear equations
  • Linear inequalities
  • Graphing & slope
  • Equation calculator
  • Equation editor
  • Elementary Math Games
  • Addition and subtraction
  • Math facts practice
  • The four operations
  • Factoring and number theory
  • Geometry topics
  • Middle/High School
  • Statistics & Graphs
  • Probability
  • Trigonometry
  • Logic and proof
  • For all levels
  • Favorite math puzzles
  • Favorite challenging puzzles
  • Math in real world
  • Problem solving & projects
  • For gifted children
  • Math history
  • Math games and fun websites
  • Interactive math tutorials
  • Math help & online tutoring
  • Assessment, review & test prep
  • Online math curricula
→ → Fractions 1

This worksheet generator produces a variety of worksheets for the four basic operations (addition, subtraction, multiplication, and division) with fractions and mixed numbers, including with negative fractions. You can make the worksheets in both html and PDF formats. You can choose like or unlike fractions, make missing number problems, restrict the problems to use proper fractions or to not to simplify the answers. Further, you can control the values of numerator, denominator, and the whole-number part to make the fractions or mixed numbers as easy or difficult as you like.

Each worksheet is randomly generated and thus unique. The and is placed on the second page of the file.

You can generate the worksheets — both are easy to print. To get the PDF worksheet, simply push the button titled " " or " ". To get the worksheet in html format, push the button " " or " ". This has the advantage that you can save the worksheet directly from your browser (choose File → Save) and then in Word or other word processing program.

Sometimes the generated worksheet is not exactly what you want. Just try again! To get a different worksheet using the same options:


Tip: chose value 1 to be a fraction and value 2 to be a mixed number, and then tick the box of "Value 1 - Value 2 random switching" to make problems where either the first or the second number is a mixed number. Just experiment with the options to customize the worksheets as you like!

(2 fractions, easy, for 4th grade) (3 fractions, for 4th grade) (for 4th grade)
(for 5th grade) (for 6th grade)
(for 5th grade) (mixed problems, for 5th grade)
(answers are whole numbers, for 5th grade) (mixed problems, for 6th grade) (incl. negative fractions, for 7th-8th grade) (incl. negative fractions, for 7th-8th grade) (negative fractions, for 7th-8th grade)


Drag unit fraction pieces (1/2, 1/3, 1/4, 1/5, 1/6, 1/8, 1/9, 1,10, 1/12, 1,16, and 1/20) onto a square that represents one whole. You can see that, for example, 6 pieces of 1/6 fit into one whole, or that 3 pieces of 1/9 are equal to 1/3, and many other similar relationships.


Use the generator below to make customized worksheets for fraction operations.






 
  Min: Max: List:
Numerator
Denominator
Whole number
  Min: Max: List:
Numerator
Denominator
Whole number

Key to Fractions workbook series

Key to Fractions Workbooks

These workbooks by Key Curriculum Press feature a number of exercises to help your child learn about fractions. Book 1 teaches fraction concepts, Book 2 teaches multiplying and dividing, Book 3 teaches adding and subtracting, and Book 4 teaches mixed numbers. Each book has a practice test at the end.

MATH Worksheets 4 Kids

Child Login

  • Kindergarten
  • Number charts
  • Skip Counting
  • Place Value
  • Number Lines
  • Subtraction
  • Multiplication
  • Word Problems
  • Comparing Numbers
  • Ordering Numbers
  • Odd and Even
  • Prime and Composite
  • Roman Numerals
  • Ordinal Numbers
  • In and Out Boxes
  • Number System Conversions
  • More Number Sense Worksheets
  • Size Comparison
  • Measuring Length
  • Metric Unit Conversion
  • Customary Unit Conversion
  • Temperature
  • More Measurement Worksheets
  • Writing Checks
  • Profit and Loss
  • Simple Interest
  • Compound Interest
  • Tally Marks
  • Mean, Median, Mode, Range
  • Mean Absolute Deviation
  • Stem-and-leaf Plot
  • Box-and-whisker Plot
  • Permutation and Combination
  • Probability
  • Venn Diagram
  • More Statistics Worksheets
  • Shapes - 2D
  • Shapes - 3D
  • Lines, Rays and Line Segments
  • Points, Lines and Planes
  • Transformation
  • Quadrilateral
  • Ordered Pairs
  • Midpoint Formula
  • Distance Formula
  • Parallel, Perpendicular and Intersecting Lines
  • Scale Factor
  • Surface Area
  • Pythagorean Theorem
  • More Geometry Worksheets
  • Converting between Fractions and Decimals
  • Significant Figures
  • Convert between Fractions, Decimals, and Percents
  • Proportions
  • Direct and Inverse Variation
  • Order of Operations
  • Squaring Numbers
  • Square Roots
  • Scientific Notations
  • Speed, Distance, and Time
  • Absolute Value
  • More Pre-Algebra Worksheets
  • Translating Algebraic Phrases
  • Evaluating Algebraic Expressions
  • Simplifying Algebraic Expressions
  • Algebraic Identities
  • Quadratic Equations
  • Systems of Equations
  • Polynomials
  • Inequalities
  • Sequence and Series
  • Complex Numbers
  • More Algebra Worksheets
  • Trigonometry
  • Math Workbooks
  • English Language Arts
  • Summer Review Packets
  • Social Studies
  • Holidays and Events
  • Worksheets >
  • Pre-Algebra >
  • Fractions >

Fraction Word Problem Worksheets

Featured here is a vast collection of fraction word problems, which require learners to simplify fractions, add like and unlike fractions; subtract like and unlike fractions; multiply and divide fractions. The fraction word problems include proper fraction, improper fraction, and mixed numbers. Solve each word problem and scroll down each printable worksheet to verify your solutions using the answer key provided. Thumb through some of these word problem worksheets for free!

Represent and Simplify the Fractions: Type 1

Represent and Simplify the Fractions: Type 1

Presented here are the fraction pdf worksheets based on real-life scenarios. Read the basic fraction word problems, write the correct fraction and reduce your answer to the simplest form.

  • Download the set

Represent and Simplify the Fractions: Type 2

Represent and Simplify the Fractions: Type 2

Before representing in fraction, children should perform addition or subtraction to solve these fraction word problems. Write your answer in the simplest form.

Adding Fractions Word Problems Worksheets

Adding Fractions Word Problems Worksheets

Conjure up a picture of how adding fractions plays a significant role in our day-to-day lives with the help of the real-life scenarios and circumstances presented as word problems here.

(15 Worksheets)

Subtracting Fractions Word Problems Worksheets

Subtracting Fractions Word Problems Worksheets

Crank up your skills with this set of printable worksheets on subtracting fractions word problems presenting real-world situations that involve fraction subtraction!

Multiplying Fractions Word Problems Worksheets

Multiplying Fractions Word Problems Worksheets

This set of printables is for the ardently active children! Explore the application of fraction multiplication and mixed-number multiplication in the real world with this exhilarating practice set.

Fraction Division Word Problems Worksheets

Fraction Division Word Problems Worksheets

Gift children a broad view of the real-life application of dividing fractions! Let them divide fractions by whole numbers, divide 2 fractions, divide mixed numbers, and solve the word problems here.

Related Worksheets

» Decimal Word Problems

» Ratio Word Problems

» Division Word Problems

» Math Word Problems

Become a Member

Membership Information

Printing Help

How to Use Online Worksheets

How to Use Printable Worksheets

Privacy Policy

Terms of Use

Facebook

Copyright © 2024 - Math Worksheets 4 Kids

This is a members-only feature!

Happy Learning!

  • Maths Questions

Subtracting Fractions Questions

Class Registration Banner

Subtracting fractions questions given here cover all types of fractions including like, unlike and mixed. These involve both numerical and word problems of subtracting fractions. Practising various questions on subtracting fractions will enhance your understanding of performing various arithmetic operations on fractions. Let’s learn how to subtract fractions using the solved problems given below.

What is the Subtraction of Fractions?

In mathematics, the subtraction of fractions involves finding the difference between two or more fractions with the same denominators or different denominators. The subtraction of fractions involves the following cases.

  • Subtracting fractions from whole numbers
  • Subtracting fractions with the same denominator
  • Subtracting fractions with different denominators
  • Subtracting mixed fractions

Also, check: Subtracting fractions

Subtracting Fractions Questions and Answers

1. Subtract: 3 – (4/13)

3 – (4/13)

Here, 3 is a whole number and 4/13 is a fraction.

= (39 – 4)/13

Therefore, 3 – (4/13) = 35/13

2. Evaluate the following:

(i) (9/14) – (5/14)

(ii) (7/10) – (3/10)

Here, the denominators are the same, i.e., they are like fractions.

Thus, (9/14) – (5/14) = (9 – 5)/14

On further simplification, we have;

(9/14) – (5/14) = 4/14 = 2/7

= (7 – 3)/10

Thus, (7/10) – (3/10) = 4/10 = ⅖

3. Compute the following.

(i) (10/12) – (⅓)

(ii) (⅔) – (5/20)

= (⅚) – (⅓)

By taking the LCM of denominators, we have;

= (5 – 2)/6

Therefore, (10/12) – (⅓) = ½

= (⅔) – (¼)

= (8 – 3)/12

Therefore, (⅔) – (5/20) = 5/12

4. Find the value of \(\begin{array}{l}14\frac{5}{9}-21\frac{7}{15}\end{array} \) .

\(\begin{array}{l}14\frac{5}{9}-21\frac{7}{15}\end{array} \)

Here, both terms are mixed fractions.

Let’s convert the mixed fractions into improper fractions.

\(\begin{array}{l}14\frac{5}{9}-21\frac{7}{15}\\=\frac{131}{9}-\frac{322}{15}\\=\frac{655-966}{45}\\=\frac{-311}{45}\\=-6\frac{41}{45} \end{array} \)

Therefore, \(\begin{array}{l}14\frac{5}{9}-21\frac{7}{15}=-6\frac{41}{45} \end{array} \)

5. Subtract 5 from 11 ⅗.

11 ⅗ – 5

Here, 11 ⅗ is a mixed fraction.

11 ⅗ = (11 × 5 + 3)/5 = 58/5

Now, 11 ⅗ – 5

= (58/5) – 5

= (58 – 25)/5

Therefore, 11 ⅗ – 5 = 33/5.

6. Find the value of (23/4) – (5/3).

(23/4) – (5/3)

By taking the LCM of denominators, we get;

= (23 × 3 – 5 × 4)/12

= (69 – 20)/12

Thus, (23/4) – (5/3) – 4 1/12.

7. Evaluate: \(\begin{array}{l}\frac{4}{3}-\left ( 1\frac{11}{12}-\frac{5}{4} \right )\end{array} \) .

\(\begin{array}{l}\frac{4}{3}-\left ( 1\frac{11}{12}-\frac{5}{4} \right )\\=\frac{4}{3}-\left ( \frac{23}{12}-\frac{5}{4} \right )\\=\frac{4}{3}-\left ( \frac{23-15}{12}\right )\\=\frac{4}{3}-\frac{8}{12}\\=\frac{4}{3}-\frac{2}{3}\\=\frac{4-2}{3}\\=\frac{2}{3}\end{array} \)

8. A father leaves his money to his four children. The first received 1/3, the second received 1/6, and the third received 2/5. How much did the remaining child receive (assume that the total money is one whole)?

Total money = 1

The amount received by the first child = 1/3

The amount received by the second child = 1/6

The amount received by the third child = 2/5

The amount received by the last child = 1 – (1/3) – (1/6) – (2/5)

= (30 – 10 – 5 – 12)/30 {since the LCM of 3, 6, and 5 is 30}

= (30 – 27)/30

Thus, the remaining child will receive 1/10th of the father’s money.

9. Vinu worked for 14/3 hours on Friday and his friend Shan worked for 25/6 hours. How many more hours than Shan did Vinu work?

Number of hours worked by Vinu = 14/3

Number of hours worked by Shan = 25/6

Difference = 14/3 – 25/6

= (28 – 25)/6

Thus, Vinu worked ½ hour, i.e., half an hour more than Shan.

10. Arnav bought some sweets that weighed 4 2/3 kg. If he gave 3 1/6 kg to his friends, what is the amount of sweets he has left?

Sweets bought by Arnav = 4 2/3 kg

Sweets given to his friends = 3 1/6 kg

Sweets left with Arnav = 4 2/3 – 3 1/6

= 14/3 – 19/6

= (28 – 19)/6

Therefore, Arnav is left with 1 1/2 kg of sweets.

Practice Questions on Subtracting Fractions

  • Calculate the following: (i) (9/11) – (½) (ii) (11/12) – (⅚)
  • Subtract 6 ⅘ from 7.
  • A jar contains 1 2/5 litres of mango juice. Kevin pours 4/15 litres of the juice into a glass. How much mango juice is left in the jar?
  • David cleaned about 3/5 of the school lawn on Saturday. He cleaned another 1/4th of the lawn on Sunday. How much of the lawn is left to clean?
  • Subtract: 3 7/12 – 1 2/6
MATHS Related Links

Leave a Comment Cancel reply

Your Mobile number and Email id will not be published. Required fields are marked *

Request OTP on Voice Call

Post My Comment

problem solving questions for subtracting fractions

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

Subtracting Fractions

You might like to read Adding Fractions first.

There are 3 simple steps to subtract fractions

  • Step 1. Make sure the bottom numbers (the denominators) are the same
  • Step 2. Subtract the top numbers (the numerators). Put the answer over the same denominator.
  • Step 3. Simplify the fraction (if needed).

Step 1 . The bottom numbers are already the same. Go straight to step 2.

Step 2 . Subtract the top numbers and put the answer over the same denominator:

3 4 − 1 4   =   3 − 1 4   =   2 4

Step 3 . Simplify the fraction:

(If you are unsure of the last step see Equivalent Fractions .)

Step 1 . The bottom numbers are different. See how the slices are different sizes? We need to make them the same before we can continue, because we can't subtract them like this:

= ?
   

To make the bottom numbers the same, multiply the top and bottom of the first fraction ( 1 / 2 ) by 3 like this:

× 3
  =  
× 3

And now our question looks like this:

 

The bottom numbers (the denominators) are the same, so we can go to step 2.

3 6 − 1 6   =   3 − 1 6   =   2 6

In picture form it looks like this:

=
   

With Pen and Paper

And here is how to do it with a pen and paper (press the play button):

 

Try .

Subtracting Mixed Fractions

I have a special page on Adding and Subtracting Mixed Fractions .

Making the Denominators the Same

In the previous example it was easy to make the denominators the same, but it can be harder ... so you may need to use either the

  • Common Denominator Method , or the
  • Least Common Denominator Method

They both work, use which one you prefer!

cupcakes

You want to sell cupcakes at a market:

  • You get paid 2 5 of total sales
  • But you have to pay 1 4 of total sales for the stall

How much do you get?

We need to subtract 1 4 from 2 5

2 5 − 1 4   =   ? ?

First make the bottom numbers (the denominators) the same.

Multiply top and bottom of 2 / 5 by 4 :

2 × 4 5 × 4 − 1 4   =   ? ?

And multiply top and bottom of 1 / 4 by 5 :

2 × 4 5 × 4 − 1 × 5 4 × 5   =   ? ?

Now do the calculations:

8 20 − 5 20   =   8 − 5 20   =   3 20

Answer: you get to keep 3 20 of total sales.

Talk to our experts

1800-120-456-456

  • Subtracting Fractions Word Problems

ffImage

Introduction to Subtracting Fractions

Subtraction of fractions is an arithmetic operation to find the difference between two fractions. To subtract two like fractions, we have to subtract their numerators and write the difference over the common denominator . To subtract two unlike fractions, we must first convert them into like fractions by taking the LCM of the denominators. We can also subtract a whole number and fraction by writing the whole number in fractional form, for example, $3 = \dfrac{3}{1}$. Let us learn more about subtracting fractions and fraction subtraction problems in detail in this article.

How to Subtract Fractions?

Fractions are referred to as a part of a whole. A group of fractions can be classified as like fractions and unlike fractions based on the denominator value . Like fractions are those that have the same denominator. For example, $\dfrac{3}{4}$ and $\dfrac{5}{4}$. While unlike fractions are those that have different denominators, for example, $\dfrac{2}{3}$ and $\dfrac{4}{7}$. We can find the difference between two like fractions, unlike fractions and fractions and whole numbers .

The steps for subtracting fractions are listed below:

Step 1: Identify whether the given fractions have the same denominator or different denominators.

Step 2: In the case of like fractions, subtract the numerators and write their difference over the common denominator. For example, $\dfrac{5}{7} - \dfrac{2}{7} = \dfrac{5 - 2}{7} = \dfrac{3}{7}$.

On the other hand, unlike fractions, find the LCM of the denominators.

Step 3: Multiply the numerator and denominator of each fraction with a whole number to get the LCM in the denominator. It is done to convert unlike fractions to like fractions.

Step 4: Subtract their numerators and write the difference over the common denominator.

This is how we subtract two fractions.

Subtracting Fractions with Like Denominators

Fractions with the same denominator can be easily subtracted. To subtract fractions with the same denominators, follow the given steps:

Subtract the numerator.

Write the common denominator as the denominator of the resulting fraction.

Now, reduce the result to the lowest fraction, if possible.

Example: $\dfrac{4}{5}-\dfrac{2}{5}=\dfrac{2}{5}$

Subtraction of Fractions with Unlike Denominators

Two fractions with different or unequal denominators can be subtracted by following these steps:

First, take the LCM of the denominators.

We convert the given fractions to like fractions with the denominator as the LCM.

Now, subtract the numerators and write their difference over the common denominator.

Simplify, if needed.

Subtracting Fractions with Whole Numbers

Just like you have subtracted two fractions, you can also subtract fractions from whole numbers and vice-versa. Any integer can be written in fractional form by writing 1 as the denominator. For example, 7 can be written as $\dfrac{7}{1}$. Therefore, to subtract fractions and whole numbers, write them in the fractional form first. Then you can easily find the difference using the same rules for subtracting two unequal fractions. Consider the following example of subtracting a fraction from an integer: $2 - \dfrac{1}{4}$

Convert the integer, 2 to fractional form, i.e. $\dfrac{2}{1}$

Now, to subtract $\dfrac{2}{1} - \dfrac{1}{4}$, the least common multiple of 1 and 4 is 4. Multiply the numerator and denominator of $\dfrac{2}{1}$ by 4 to get 4 in the denominator.

$\dfrac{2}{1} - \dfrac{1}{4}$

= $\dfrac{2 \times 4}{1 \times 4} - \dfrac{1}{4}$

= $\dfrac{8}{4} - \dfrac{1}{4}$

= $\dfrac{7}{4}$

Thus, the subtraction of an integer and fraction, $2 - \dfrac{1}{4} = \dfrac{7}{4}$.

Solved Word Problems on Fraction Subtraction

Q 1. Jack jumped $4 \dfrac{1}{7}$ m in the long jump competition. Shane jumped $3 \dfrac{2}{9}$ m. Who jumped longer, and how many meters?

Ans: Jack jumped $=4 \dfrac{1}{7} \mathrm{~m}=\dfrac{29}{7} \mathrm{~m}=\dfrac{261}{63} \mathrm{~m}$

Shane jumped $=3 \dfrac{2}{9} \mathrm{~m}=\dfrac{29}{9} \mathrm{~m}=\dfrac{203}{63} \mathrm{~m}$

Because $261>203$, Jack jumped more.

$\text { Difference }=\dfrac{261}{63} \mathrm{~m}-\dfrac{203}{63} \mathrm{~m}$

$=\dfrac{261-203}{63} \mathrm{~m}$

$=\dfrac{58}{63} \mathrm{~m}$

Therefore, Jack jumped $\dfrac{58}{63} \mathrm{~m}$ more than Shane.

Q 2. Mary gave $\dfrac{1}{8}$ part of her money to Shelly. What fraction of money is left with her?

Ans: Money given to Shelly $=\dfrac{1}{8}$

Remaining money $=1-\dfrac{1}{8}$

$=\dfrac{1}{1}-\dfrac{1}{8}$

$=\dfrac{8}{8}-\dfrac{1}{8}$

$=\dfrac{7}{8}$

Thus, the fraction of money left is $=\dfrac{7}{8}$.

Fraction Subtraction Problems for Practice

Q 1. Sharon spent $4 \dfrac{3}{7}$ hours studying maths and playing tennis. How long did she study if she played tennis for $2 \dfrac{1}{4}$ hours?

Ans: $\dfrac{61}{28}$

Q 2. Rex had some money. He spent $\dfrac{1}{6}$ of it on Monday, $\dfrac{3}{8}$ on Thursday, and $\dfrac{1}{4}$ on Wednesday. What part of the money is still left with him?

Ans: $\dfrac{5}{24}$.

Q 3. Ron used $3 \dfrac{1}{4}$ litres of paint from a tin of $5 \dfrac{1}{2}$, to colour the walls of his room. What fraction of paint is still left in the tin?

Ans: $\dfrac{9}{4}$ litres.

In this article, we have learned about fractions. Then we learned about the different rules of how to solve subtracting fractions word problems having like as well as unlike denominators with the help of an example. We became aware of solving, unlike denominators, by taking the help of LCM of the denominators, then multiplying with the numerator and calculating the difference. We also did numerous word problems on fraction subtraction. Kindly solve the given unsolved problems for practice.

arrow-right

FAQs on Subtracting Fractions Word Problems

1. What are the rules for adding fractions?

The basic rule of adding fractions is to first ensure whether the denominators are the same. If the denominators are different, first convert them to equal fractions by taking LCM and then solve the fractions by the usual addition.

2. How to add Improper Fractions?

Improper fractions are added in the same way as proper fractions. Some steps are given below:

If the fractions are the same, add the numerator keeping the same denominator.

To add different fractions, take the lowest common multiple of the denominators, convert them to equivalent fractions, and then add them as equal fractions.

When the addition is complete, and the answer is an improper fraction, convert the fraction to a mixed one and write it in its simplest form.

3. Why are addition and subtraction important?

Addition and subtraction play a very important role in our daily life activities, which involve counting, such as billing at the store, buying groceries, travelling, the speed of a vehicle, checking weight, and so on. It helps us understand situational-based problems. Hence, addition and subtraction are important in our life.

Fractions Worksheets

Welcome to the fractions worksheets page at Math-Drills.com where the cup is half full! This is one of our more popular pages most likely because learning fractions is incredibly important in a person's life and it is a math topic that many approach with trepidation due to its bad rap over the years. Fractions really aren't that difficult to master especially with the support of our wide selection of worksheets.

This page includes Fractions worksheets for understanding fractions including modeling, comparing, ordering, simplifying and converting fractions and operations with fractions. We start you off with the obvious: modeling fractions. It is a great idea if students can actually understand what a fraction is, so please do spend some time with the modeling aspect. Relating modeling to real life helps a great deal too as it is much easier to relate to half a cookie than to half a square. Ask most students what you get if you add half a cookie and another half a cookie, and they'll probably let you know that it makes one delicious snack.

The other fractions worksheets on this page are devoted to helping students understand the concept of fractions. From comparing and ordering to simplifying and converting... by the time students master the material on this page, operations of fractions will be a walk in the park.

Most Popular Fractions Worksheets this Week

Simplifying Proper Fractions to Lowest Terms (Easier Questions)

Fraction Circles

problem solving questions for subtracting fractions

Fraction circle manipulatives are mainly used for comparing fractions, but they can be used for a variety of other purposes such as representing and identifying fractions, adding and subtracting fractions, and as probability spinners. There are a variety of options depending on your purpose. Fraction circles come in small and large versions, labeled and unlabeled versions and in three different color schemes: black and white, color, and light gray. The color scheme matches the fraction strips and use colors that are meant to show good contrast among themselves. Do note that there is a significant prevalence of color-blindness in the population, so don't rely on all students being able to differentiate the colors.

Suggested activity for comparing fractions: Photocopy the black and white version onto an overhead projection slide and another copy onto a piece of paper. Alternatively, you can use two pieces of paper and hold them up to the light for this activity. Use a pencil to represent the first fraction on the paper copy. Use a non-permanent overhead pen to represent the second fraction. Lay the slide over the paper and compare the two circles. You should easily be able to tell which is greater or lesser or if the two fractions are equal. Re-use both sheets by erasing the pencil and washing off the marker.

Adding fractions with fraction circles will involve two copies on paper. Cut out the fraction circles and segments of one copy and leave the other copy intact. To add 1/3 + 1/2, for example, place a 1/3 segment and a 1/2 segment into a circle and hold it over various fractions on the intact copy to see what 1/2 + 1/3 is equivalent to. 5/6 or 10/12 should work.

  • Small Fraction Circles Small Fraction Circles in Black and White with Labels Small Fraction Circles in Color with Labels Small Fraction Circles in Light Gray with Labels Small Fraction Circles in Black and White Unlabeled Small Fraction Circles in Color Unlabeled Small Fraction Circles in Light Gray Unlabeled
  • Large Fraction Circles Large Fraction Circles in Black and White with Labels Large Fraction Circles in Color with Labels Large Fraction Circles in Light Gray with Labels Large Fraction Circles in Black and White Unlabeled Large Fraction Circles in Color Unlabeled Large Fraction Circles in Light Gray Unlabeled

Fraction Strips

problem solving questions for subtracting fractions

Fractions strips are often used for comparing fractions. Students are able to see quite easily the relationships and equivalence between fractions with different denominators. It can be quite useful for students to have two copies: one copy cut into strips and the other copy kept intact. They can then use the cut-out strips on the intact page to individually compare fractions. For example, they can use the halves strip to see what other fractions are equivalent to one-half. This can also be accomplished with a straight edge such as a ruler without cutting out any strips. Pairs or groups of strips can also be compared side-by-side if they are cut out. Addition and subtraction (etc.) are also possibilities; for example, adding a one-quarter and one-third can be accomplished by shifting the thirds strip so that it starts at the end of one-quarter then finding a strip that matches the end of the one-third mark (7/12 should do it).

Teachers might consider copying the fraction strips onto overhead projection acetates for whole class or group activities. Acetate versions are also useful as a hands-on manipulative for students in conjunction with an uncut page.

The "Smart" Fraction Strips include strips in a more useful order, eliminate the 7ths and 11ths strips as they don't have any equivalents and include 15ths and 16ths. The colors are consistent with the classic versions, so the two sets can be combined.

  • Classic Fraction Strips with Labels Classic Fraction Strips in Black and White With Labels Classic Fraction Strips in Color With Labels Classic Fraction Strips in Gray With Labels
  • Unlabeled Classic Fraction Strips Classic Fraction Strips in Black and White Unlabeled Classic Fraction Strips in Color Unlabeled Classic Fraction Strips in Gray Unlabeled
  • Smart Fraction Strips with Labels Smart Fraction Strips in Black and White With Labels Smart Fraction Strips in Color With Labels Smart Fraction Strips in Gray With Labels

Modeling fractions

problem solving questions for subtracting fractions

Fractions can represent parts of a group or parts of a whole. In these worksheets, fractions are modeled as parts of a group. Besides using the worksheets in this section, you can also try some more interesting ways of modeling fractions. Healthy snacks can make great models for fractions. Can you cut a cucumber into thirds? A tomato into quarters? Can you make two-thirds of the grapes red and one-third green?

  • Modeling Fractions with Groups of Shapes Coloring Groups of Shapes to Represent Fractions Identifying Fractions from Colored Groups of Shapes (Only Simplified Fractions up to Eighths) Identifying Fractions from Colored Groups of Shapes (Halves Only) Identifying Fractions from Colored Groups of Shapes (Halves and Thirds) Identifying Fractions from Colored Groups of Shapes (Halves, Thirds and Fourths) Identifying Fractions from Colored Groups of Shapes (Up to Fifths) Identifying Fractions from Colored Groups of Shapes (Up to Sixths) Identifying Fractions from Colored Groups of Shapes (Up to Eighths) Identifying Fractions from Colored Groups of Shapes (OLD Version; Print Too Light)
  • Modeling Fractions with Rectangles Modeling Halves Modeling Thirds Modeling Halves and Thirds Modeling Fourths (Color Version) Modeling Fourths (Grey Version) Coloring Fourths Models Modeling Fifths Coloring Fifths Models Modeling Sixths Coloring Sixths Models
  • Modeling Fractions with Circles Modeling Halves, Thirds and Fourths Coloring Halves, Thirds and Fourths Modeling Halves, Thirds, Fourths, and Fifths Coloring Halves, Thirds, Fourths, and Fifths Modeling Halves to Sixths Coloring Halves to Sixths Modeling Halves to Eighths Coloring Halves to Eighths Modeling Halves to Twelfths Coloring Halves to Twelfths

Ratio and Proportion Worksheets

problem solving questions for subtracting fractions

The equivalent fractions models worksheets include only the "baking fractions" in the A versions. To see more difficult and varied fractions, please choose the B to J versions after loading the A version. More picture ratios can be found on holiday and seasonal pages. Try searching for picture ratios to find more.

  • Picture Ratios Autumn Trees Part-to-Part Picture Ratios ( Grouped ) Autumn Trees Part-to-Part and Part-to-Whole Picture Ratios ( Grouped )
  • Equivalent Fractions Equivalent Fractions With Blanks ( Multiply Right ) ✎ Equivalent Fractions With Blanks ( Divide Left ) ✎ Equivalent Fractions With Blanks ( Multiply Right or Divide Left ) ✎ Equivalent Fractions With Blanks ( Divide Right ) ✎ Equivalent Fractions With Blanks ( Multiply Left ) ✎ Equivalent Fractions With Blanks ( Multiply Left or Divide Right ) ✎ Equivalent Fractions With Blanks ( Multiply or Divide Right ) ✎ Equivalent Fractions With Blanks ( Multiply or Divide Left ) ✎ Equivalent Fractions With Blanks ( Multiply or Divide in Either Direction ) ✎ Are These Fractions Equivalent? (Multiplier 2 to 5) Are These Fractions Equivalent? (Multiplier 5 to 15) Equivalent Fractions Models Equivalent Fractions Models with the Simplified Fraction First Equivalent Fractions Models with the Simplified Fraction Second
  • Equivalent Ratios Equivalent Ratios with Blanks Only on Right Equivalent Ratios with Blanks Anywhere Equivalent Ratios with x 's

Comparing and Ordering Fractions

problem solving questions for subtracting fractions

Comparing fractions involves deciding which of two fractions is greater in value or if the two fractions are equal in value. There are generally four methods that can be used for comparing fractions. First is to use common denominators . If both fractions have the same denominator, comparing the fractions simply involves comparing the numerators. Equivalent fractions can be used to convert one or both fractions, so they have common denominators. A second method is to convert both fractions to a decimal and compare the decimal numbers. Visualization is the third method. Using something like fraction strips , two fractions can be compared with a visual tool. The fourth method is to use a cross-multiplication strategy where the numerator of the first fraction is multiplied by the denominator of the second fraction; then the numerator of the second fraction is multiplied by the denominator of the first fraction. The resulting products can be compared to decide which fraction is greater (or if they are equal).

  • Comparing Proper Fractions Comparing Proper Fractions to Sixths ✎ Comparing Proper Fractions to Ninths (No Sevenths) ✎ Comparing Proper Fractions to Ninths ✎ Comparing Proper Fractions to Twelfths (No Sevenths; No Elevenths) ✎ Comparing Proper Fractions to Twelfths ✎

The worksheets in this section also include improper fractions. This might make the task of comparing even easier for some questions that involve both a proper and an improper fraction. If students recognize one fraction is greater than one and the other fraction is less than one, the greater fraction will be obvious.

  • Comparing Proper and Improper Fractions Comparing Proper and Improper Fractions to Sixths ✎ Comparing Proper and Improper Fractions to Ninths (No Sevenths) ✎ Comparing Proper and Improper Fractions to Ninths ✎ Comparing Proper and Improper Fractions to Twelfths (No Sevenths; No Elevenths) ✎ Comparing Proper and Improper Fractions to Twelfths ✎ Comparing Improper Fractions to Sixths ✎ Comparing Improper Fractions to Ninths (No Sevenths) ✎ Comparing Improper Fractions to Ninths ✎ Comparing Improper Fractions to Twelfths (No Sevenths; No Elevenths) ✎ Comparing Improper Fractions to Twelfths ✎

This section additionally includes mixed fractions. When comparing mixed and improper fractions, it is useful to convert one of the fractions to the other's form either in writing or mentally. Converting to a mixed fraction is probably the better route since the first step is to compare the whole number portions, and if one is greater than the other, the proper fraction portion can be ignored. If the whole number portions are equal, the proper fractions must be compared to see which number is greater.

  • Comparing Proper, Improper and Mixed Fractions Comparing Proper, Improper and Mixed Fractions to Sixths ✎ Comparing Proper, Improper and Mixed Fractions to Ninths (No Sevenths) ✎ Comparing Proper, Improper and Mixed Fractions to Ninths ✎ Comparing Proper, Improper and Mixed Fractions to Twelfths (No Sevenths; No Elevenths) ✎ Comparing Proper, Improper and Mixed Fractions to Twelfths ✎
  • Comparing Improper and Mixed Fractions Comparing Improper and Mixed Fractions to Sixths ✎ Comparing Improper and Mixed Fractions to Ninths (No Sevenths) ✎ Comparing Improper and Mixed Fractions to Ninths ✎ Comparing Improper and Mixed Fractions to Twelfths (No Sevenths; No Elevenths) ✎ Comparing Improper and Mixed Fractions to Twelfths ✎
  • Comparing Mixed Fractions Comparing Mixed Fractions to Sixths ✎ Comparing Mixed Fractions to Ninths (No Sevenths) ✎ Comparing Mixed Fractions to Ninths ✎ Comparing Mixed Fractions to Twelfths (No Sevenths; No Elevenths) ✎ Comparing Mixed Fractions to Twelfths ✎

Many of the same strategies that work for comparing fractions also work for ordering fractions. Using manipulatives such as fraction strips, using number lines, or finding decimal equivalents will all have your student(s) putting fractions in the correct order in no time. We've probably said this before, but make sure that you emphasize that when comparing or ordering fractions, students understand that the whole needs to be the same. Comparing half the population of Canada with a third of the population of the United States won't cut it. Try using some visuals to reinforce this important concept. Even though we've included number lines below, feel free to use your own strategies.

  • Ordering Fractions with Easy Denominators on a Number Line Ordering Fractions with Easy Denominators to 10 on a Number Line Ordering Fractions with Easy Denominators to 24 on a Number Line Ordering Fractions with Easy Denominators to 60 on a Number Line Ordering Fractions with Easy Denominators to 100 on a Number Line
  • Ordering Fractions with Easy Denominators on a Number Line (Including Negative Fractions) Ordering Fractions with Easy Denominators to 10 + Negatives on a Number Line Ordering Fractions with Easy Denominators to 24 + Negatives on a Number Line Ordering Fractions with Easy Denominators to 60 + Negatives on a Number Line Ordering Fractions with Easy Denominators to 100 + Negatives on a Number Line
  • Ordering Fractions with All Denominators on a Number Line Ordering Fractions with All Denominators to 10 on a Number Line Ordering Fractions with All Denominators to 24 on a Number Line Ordering Fractions with All Denominators to 60 on a Number Line Ordering Fractions with All Denominators to 100 on a Number Line
  • Ordering Fractions with All Denominators on a Number Line (Including Negative Fractions) Ordering Fractions with All Denominators to 10 + Negatives on a Number Line Ordering Fractions with All Denominators to 24 + Negatives on a Number Line Ordering Fractions with All Denominators to 60 + Negatives on a Number Line Ordering Fractions with All Denominators to 100 + Negatives on a Number Line

The ordering fractions worksheets in this section do not include a number line, to allow for students to use various sorting strategies.

  • Ordering Positive Fractions Ordering Positive Fractions with Like Denominators Ordering Positive Fractions with Like Numerators Ordering Positive Fractions with Like Numerators or Denominators Ordering Positive Fractions with Proper Fractions Only Ordering Positive Fractions with Improper Fractions Ordering Positive Fractions with Mixed Fractions Ordering Positive Fractions with Improper and Mixed Fractions
  • Ordering Positive and Negative Fractions Ordering Positive and Negative Fractions with Like Denominators Ordering Positive and Negative Fractions with Like Numerators Ordering Positive and Negative Fractions with Like Numerators or Denominators Ordering Positive and Negative Fractions with Proper Fractions Only Ordering Positive and Negative Fractions with Improper Fractions Ordering Positive and Negative Fractions with Mixed Fractions Ordering Positive and Negative Fractions with Improper and Mixed Fractions

Simplifying & Converting Fractions Worksheets

problem solving questions for subtracting fractions

Rounding fractions helps students to understand fractions a little better and can be applied to estimating answers to fractions questions. For example, if one had to estimate 1 4/7 × 6, they could probably say the answer was about 9 since 1 4/7 is about 1 1/2 and 1 1/2 × 6 is 9.

  • Rounding Fractions with Helper Lines Rounding Fractions to the Nearest Whole with Helper Lines Rounding Mixed Numbers to the Nearest Whole with Helper Lines Rounding Fractions to the Nearest Half with Helper Lines Rounding Mixed Numbers to the Nearest Half with Helper Lines
  • Rounding Fractions Rounding Fractions to the Nearest Whole Rounding Mixed Numbers to the Nearest Whole Rounding Fractions to the Nearest Half Rounding Mixed Numbers to the Nearest Half

Learning how to simplify fractions makes a student's life much easier later on when learning operations with fractions. It also helps them to learn that different-looking fractions can be equivalent. One way of demonstrating this is to divide out two equivalent fractions. For example 3/2 and 6/4 both result in a quotient of 1.5 when divided. By practicing simplifying fractions, students will hopefully recognize unsimplified fractions when they start adding, subtracting, multiplying and dividing with fractions.

  • Simplifying Fractions Simplify Fractions (easier) Simplify Fractions (harder) Simplify Improper Fractions (easier) Simplify Improper Fractions (harder)
  • Converting Between Improper and Mixed Fractions Converting Mixed Fractions to Improper Fractions Converting Improper Fractions to Mixed Fractions Converting Between (both ways) Mixed and Improper Fractions
  • Converting Between Fractions and Decimals Converting Fractions to Terminating Decimals Converting Fractions to Terminating and Repeating Decimals Converting Terminating Decimals to Fractions Converting Terminating and Repeating Decimals to Fractions Converting Fractions to Hundredths
  • Converting Between Fractions, Decimals, Percents and Ratios with Terminating Decimals Only Converting Fractions to Decimals, Percents and Part-to- Part Ratios ( Terminating Decimals Only) Converting Fractions to Decimals, Percents and Part-to- Whole Ratios ( Terminating Decimals Only) Converting Decimals to Fractions, Percents and Part-to- Part Ratios ( Terminating Decimals Only) Converting Decimals to Fractions, Percents and Part-to- Whole Ratios ( Terminating Decimals Only) Converting Percents to Fractions, Decimals and Part-to- Part Ratios ( Terminating Decimals Only) Converting Percents to Fractions, Decimals and Part-to- Whole Ratios ( Terminating Decimals Only) Converting Part-to-Part Ratios to Fractions, Decimals and Percents ( Terminating Decimals Only) Converting Part-to-Whole Ratios to Fractions, Decimals and Percents ( Terminating Decimals Only) Converting Various Fractions, Decimals, Percents and Part-to- Part Ratios ( Terminating Decimals Only) Converting Various Fractions, Decimals, Percents and Part-to- Whole Ratios ( Terminating Decimals Only)
  • Converting Between Fractions, Decimals, Percents and Ratios with Terminating and Repeating Decimals Converting Fractions to Decimals, Percents and Part-to- Part Ratios Converting Fractions to Decimals, Percents and Part-to- Whole Ratios Converting Decimals to Fractions, Percents and Part-to- Part Ratios Converting Decimals to Fractions, Percents and Part-to- Whole Ratios Converting Percents to Fractions, Decimals and Part-to- Part Ratios Converting Percents to Fractions, Decimals and Part-to- Whole Ratios Converting Part-to-Part Ratios to Fractions, Decimals and Percents Converting Part-to-Whole Ratios to Fractions, Decimals and Percents Converting Various Fractions, Decimals, Percents and Part-to- Part Ratios Converting Various Fractions, Decimals, Percents and Part-to- Whole Ratios Converting Various Fractions, Decimals, Percents and Part-to- Part Ratios with 7ths and 11ths Converting Various Fractions, Decimals, Percents and Part-to- Whole Ratios with 7ths and 11ths

Multiplying Fractions

problem solving questions for subtracting fractions

Multiplying fractions is usually less confusing operationally than any other operation and can be less confusing conceptually if approached in the right way. The algorithm for multiplying is simply multiply the numerators then multiply the denominators. The magic word in understanding the multiplication of fractions is, "of." For example what is two-thirds OF six? What is a third OF a half? When you use the word, "of," it gets much easier to visualize fractions multiplication. Example: cut a loaf of bread in half, then cut the half into thirds. One third OF a half loaf of bread is the same as 1/3 x 1/2 and tastes delicious with butter.

  • Multiplying Two Proper Fraction Multiplying Two Proper Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Multiplying Two Proper Fractions with All Simplifying (Fillable, Savable, Printable) ✎ ✎ Multiplying Two Proper Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying Two Proper Fractions with No Simplifying (Printable Only) Multiplying Two Proper Fractions with All Simplifying (Printable Only) Multiplying Two Proper Fractions with Some Simplifying (Printable Only)
  • Multiplying Proper and Improper Fractions Multiplying Proper and Improper Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Multiplying Proper and Improper Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Multiplying Proper and Improper Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying Proper and Improper Fractions with No Simplifying (Printable Only) Multiplying Proper and Improper Fractions with All Simplifying (Printable Only) Multiplying Proper and Improper Fractions with Some Simplifying (Printable Only)
  • Multiplying Two Improper Fractions Multiplying Two Improper Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Multiplying Two Improper Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Multiplying Two Improper Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying Two Improper Fractions with No Simplifying (Printable Only) Multiplying Two Improper Fractions with All Simplifying (Printable Only) Multiplying Two Improper Fractions with Some Simplifying (Printable Only)
  • Multiplying Proper and Mixed Fractions Multiplying Proper and Mixed Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Multiplying Proper and Mixed Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Multiplying Proper and Mixed Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying Proper and Mixed Fractions with No Simplifying (Printable Only) Multiplying Proper and Mixed Fractions with All Simplifying (Printable Only) Multiplying Proper and Mixed Fractions with Some Simplifying (Printable Only)
  • Multiplying Two Mixed Fractions Multiplying Two Mixed Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Multiplying Two Mixed Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Multiplying Two Mixed Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying Two Mixed Fractions with No Simplifying (Printable Only) Multiplying Two Mixed Fractions with All Simplifying (Printable Only) Multiplying Two Mixed Fractions with Some Simplifying (Printable Only)
  • Multiplying Whole Numbers and Proper Fractions Multiplying Whole Numbers and Proper Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Multiplying Whole Numbers and Proper Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Multiplying Whole Numbers and Proper Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying Whole Numbers and Proper Fractions with No Simplifying (Printable Only) Multiplying Whole Numbers and Proper Fractions with All Simplifying (Printable Only) Multiplying Whole Numbers and Proper Fractions with Some Simplifying (Printable Only)
  • Multiplying Whole Numbers and Improper Fractions Multiplying Whole Numbers and Improper Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Multiplying Whole Numbers and Improper Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Multiplying Whole Numbers and Improper Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying Whole Numbers and Improper Fractions with No Simplifying (Printable Only) Multiplying Whole Numbers and Improper Fractions with All Simplifying (Printable Only) Multiplying Whole Numbers and Improper Fractions with Some Simplifying (Printable Only)
  • Multiplying Whole Numbers and Mixed Fractions Multiplying Whole Numbers and Mixed Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Multiplying Whole Numbers and Mixed Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Multiplying Whole Numbers and Mixed Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying Whole Numbers and Mixed Fractions with No Simplifying (Printable Only) Multiplying Whole Numbers and Mixed Fractions with All Simplifying (Printable Only) Multiplying Whole Numbers and Mixed Fractions with Some Simplifying (Printable Only)
  • Multiplying Proper, Improper and Mixed Fractions Multiplying Proper, Improper and Mixed Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Multiplying Proper, Improper and Mixed Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Multiplying Proper, Improper and Mixed Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying Proper, Improper and Mixed Fractions with No Simplifying (Printable Only) Multiplying Proper, Improper and Mixed Fractions with All Simplifying (Printable Only) Multiplying Proper, Improper and Mixed Fractions with Some Simplifying (Printable Only)
  • Multiplying 3 Fractions Multiplying 3 Proper Fractions (Fillable, Savable, Printable) ✎ Multiplying 3 Proper and Improper Fractions (Fillable, Savable, Printable) ✎ Multiplying Proper and Improper Fractions and Whole Numbers (3 factors) (Fillable, Savable, Printable) ✎ Multiplying Fractions and Mixed Fractions (3 factors) (Fillable, Savable, Printable) ✎ Multiplying 3 Mixed Fractions (Fillable, Savable, Printable) ✎

Dividing Fractions

problem solving questions for subtracting fractions

Conceptually, dividing fractions is probably the most difficult of all the operations, but we're going to help you out. The algorithm for dividing fractions is just like multiplying fractions, but you find the inverse of the second fraction or you cross-multiply. This gets you the right answer which is extremely important especially if you're building a bridge. We told you how to conceptualize fraction multiplication, but how does it work with division? Easy! You just need to learn the magic phrase: "How many ____'s are there in ______? For example, in the question 6 ÷ 1/2, you would ask, "How many halves are there in 6?" It becomes a little more difficult when both numbers are fractions, but it isn't a giant leap to figure it out. 1/2 ÷ 1/4 is a fairly easy example, especially if you think in terms of U.S. or Canadian coins. How many quarters are there in a half dollar?

  • Dividing Two Proper Fractions Dividing Two Proper Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Dividing Two Proper Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Dividing Two Proper Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Dividing Two Proper Fractions with No Simplifying (Printable Only) Dividing Two Proper Fractions with All Simplifying (Printable Only) Dividing Two Proper Fractions with Some Simplifying (Printable Only)
  • Dividing Proper and Improper Fractions Dividing Proper and Improper Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Dividing Proper and Improper Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Dividing Proper and Improper Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Dividing Proper and Improper Fractions with No Simplifying (Printable Only) Dividing Proper and Improper Fractions with All Simplifying (Printable Only) Dividing Proper and Improper Fractions with Some Simplifying (Printable Only)
  • Dividing Two Improper Fractions Dividing Two Improper Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Dividing Two Improper Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Dividing Two Improper Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Dividing Two Improper Fractions with No Simplifying (Printable Only) Dividing Two Improper Fractions with All Simplifying (Printable Only) Dividing Two Improper Fractions with Some Simplifying (Printable Only)
  • Dividing Proper and Mixed Fractions Dividing Proper and Mixed Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Dividing Proper and Mixed Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Dividing Proper and Mixed Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Dividing Proper and Mixed Fractions with No Simplifying (Printable Only) Dividing Proper and Mixed Fractions with All Simplifying (Printable Only) Dividing Proper and Mixed Fractions with Some Simplifying (Printable Only)
  • Dividing Two Mixed Fractions Dividing Two Mixed Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Dividing Two Mixed Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Dividing Two Mixed Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Dividing Two Mixed Fractions with No Simplifying (Printable Only) Dividing Two Mixed Fractions with All Simplifying (Printable Only) Dividing Two Mixed Fractions with Some Simplifying (Printable Only)
  • Dividing Whole Numbers and Proper Fractions Dividing Whole Numbers and Proper Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Dividing Whole Numbers and Proper Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Dividing Whole Numbers and Proper Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Dividing Whole Numbers and Proper Fractions with No Simplifying (Printable Only) Dividing Whole Numbers and Proper Fractions with All Simplifying (Printable Only) Dividing Whole Numbers and Proper Fractions with Some Simplifying (Printable Only)
  • Dividing Whole Numbers and Improper Fractions Dividing Whole Numbers and Improper Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Dividing Whole Numbers and Improper Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Dividing Whole Numbers and Improper Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Dividing Whole Numbers and Improper Fractions with No Simplifying (Printable Only) Dividing Whole Numbers and Improper Fractions with All Simplifying (Printable Only) Dividing Whole Numbers and Improper Fractions with Some Simplifying (Printable Only)
  • Dividing Whole Numbers and Mixed Fractions Dividing Whole Numbers and Mixed Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Dividing Whole Numbers and Mixed Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Dividing Whole Numbers and Mixed Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Dividing Whole Numbers and Mixed Fractions with No Simplifying (Printable Only) Dividing Whole Numbers and Mixed Fractions with All Simplifying (Printable Only) Dividing Whole Numbers and Mixed Fractions with Some Simplifying (Printable Only)
  • Dividing Proper, Improper and Mixed Fractions Dividing Proper, Improper and Mixed Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Dividing Proper, Improper and Mixed Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Dividing Proper, Improper and Mixed Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Dividing Proper, Improper and Mixed Fractions with No Simplifying (Printable Only) Dividing Proper, Improper and Mixed Fractions with All Simplifying (Printable Only) Dividing Proper, Improper and Mixed Fractions with Some Simplifying (Printable Only)
  • Dividing 3 Fractions Dividing 3 Fractions Dividing 3 Fractions (Some Whole Numbers) Dividing 3 Fractions (Some Mixed) Dividing 3 Mixed Fractions

Multiplying and Dividing Fractions

problem solving questions for subtracting fractions

This section includes worksheets with both multiplication and division mixed on each worksheet. Students will have to pay attention to the signs.

  • Multiplying and Dividing Two Proper Fractions Multiplying and Dividing Two Proper Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Two Proper Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Two Proper Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Two Proper Fractions with No Simplifying (Printable Only) Multiplying and Dividing Two Proper Fractions with All Simplifying (Printable Only) Multiplying and Dividing Two Proper Fractions with Some Simplifying (Printable Only)
  • Multiplying and Dividing Proper and Improper Fractions Multiplying and Dividing Proper and Improper Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Proper and Improper Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Proper and Improper Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Proper and Improper Fractions with No Simplifying (Printable Only) Multiplying and Dividing Proper and Improper Fractions with All Simplifying (Printable Only) Multiplying and Dividing Proper and Improper Fractions with Some Simplifying (Printable Only)
  • Multiplying and Dividing Two Improper Fractions Multiplying and Dividing Two Improper Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Two Improper Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Two Improper Fractions (Fillable, Savable, Printable) ✎ Multiplying and Dividing Two Improper Fractions with No Simplifying (Printable Only) Multiplying and Dividing Two Improper Fractions with All Simplifying (Printable Only) Multiplying and Dividing Two Improper Fractions (Printable Only)
  • Multiplying and Dividing Proper and Mixed Fractions Multiplying and Dividing Proper and Mixed Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Proper and Mixed Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Proper and Mixed Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Proper and Mixed Fractions with No Simplifying (Printable Only) Multiplying and Dividing Proper and Mixed Fractions with All Simplifying (Printable Only) Multiplying and Dividing Proper and Mixed Fractions with Some Simplifying (Printable Only)
  • Multiplying and Dividing Two Mixed Fractions Multiplying and Dividing Two Mixed Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Two Mixed Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Two Mixed Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Two Mixed Fractions with No Simplifying (Printable Only) Multiplying and Dividing Two Mixed Fractions with All Simplifying (Printable Only) Multiplying and Dividing Two Mixed Fractions with Some Simplifying (Printable Only)
  • Multiplying and Dividing Whole Numbers and Proper Fractions Fractions Multiplying and Dividing Whole Numbers and Proper Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Whole Numbers and Proper Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Whole Numbers and Proper Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Whole Numbers and Proper Fractions with No Simplifying (Printable Only) Multiplying and Dividing Whole Numbers and Proper Fractions with All Simplifying (Printable Only) Multiplying and Dividing Whole Numbers and Proper Fractions with Some Simplifying (Printable Only)
  • Multiplying and Dividing Whole Numbers and Improper Fractions Multiplying and Dividing Whole Numbers and Improper Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Whole Numbers and Improper Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Whole Numbers and Improper Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Whole Numbers and Improper Fractions with No Simplifying (Printable Only) Multiplying and Dividing Whole Numbers and Improper Fractions with All Simplifying (Printable Only) Multiplying and Dividing Whole Numbers and Improper Fractions with Some Simplifying (Printable Only)
  • Multiplying and Dividing Whole Numbers and Mixed Fractions Multiplying and Dividing Whole Numbers and Mixed Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Whole Numbers and Mixed Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Whole Numbers and Mixed Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Whole Numbers and Mixed Fractions with No Simplifying (Printable Only) Multiplying and Dividing Whole Numbers and Mixed Fractions with All Simplifying (Printable Only) Multiplying and Dividing Whole Numbers and Mixed Fractions with Some Simplifying (Printable Only)
  • Multiplying and Dividing Proper, Improper and Mixed Fractions Multiplying and Dividing Proper, Improper and Mixed Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Proper, Improper and Mixed Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Proper, Improper and Mixed Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Proper, Improper and Mixed Fractions with No Simplifying (Printable Only) Multiplying and Dividing Proper, Improper and Mixed Fractions with All Simplifying (Printable Only) Multiplying and Dividing Proper, Improper and Mixed Fractions with Some Simplifying (Printable Only)
  • Multiplying and Dividing 3 Fractions Multiplying/Dividing Fractions (three factors) Multiplying/Dividing Mixed Fractions (3 factors)

Adding Fractions

problem solving questions for subtracting fractions

Adding fractions requires the annoying common denominator. Make it easy on your students by first teaching the concepts of equivalent fractions and least common multiples. Once students are familiar with those two concepts, the idea of finding fractions with common denominators for adding becomes that much easier. Spending time on modeling fractions will also help students to understand fractions addition. Relating fractions to familiar examples will certainly help. For example, if you add a 1/2 banana and a 1/2 banana, you get a whole banana. What happens if you add a 1/2 banana and 3/4 of another banana?

  • Adding Two Proper Fractions with Equal Denominators and Proper Fraction Results Adding Two Proper Fractions with Equal Denominators, Proper Fractions Results, and No Simplifying (Fillable, Savable, Printable) ✎ Adding Two Proper Fractions with Equal Denominators, Proper Fractions Results, and All Simplifying (Fillable, Savable, Printable) ✎ Adding Two Proper Fractions with Equal Denominators, Proper Fractions Results, and Some Simplifying (Fillable, Savable, Printable) ✎ Adding Two Proper Fractions with Equal Denominators, Proper Fractions Result, and No Simplifying (Printable Only) Adding Two Proper Fractions with Equal Denominators, Proper Fractions Result, and All Simplifying (Printable Only) Adding Two Proper Fractions with Equal Denominators, Proper Fractions Result, and Some Simplifying (Printable Only)
  • Adding Two Proper Fractions with Equal Denominators and Mixed Fraction Results Adding Two Proper Fractions with Equal Denominators, Mixed Fractions Results, and No Simplifying (Fillable, Savable, Printable) ✎ Adding Two Proper Fractions with Equal Denominators, Mixed Fractions Results, and All Simplifying (Fillable, Savable, Printable) ✎ Adding Two Proper Fractions with Equal Denominators, Mixed Fractions Results, and Some Simplifying (Fillable, Savable, Printable) ✎ Adding Two Proper Fractions with Equal Denominators, Mixed Fractions Result, and No Simplifying (Printable Only) Adding Two Proper Fractions with Equal Denominators, Mixed Fractions Result, and All Simplifying (Printable Only) Adding Two Proper Fractions with Equal Denominators, Mixed Fractions Result, and Some Simplifying (Printable Only)
  • Adding Two Proper Fractions with Similar Denominators and Proper Fraction Results Adding Two Proper Fractions with Similar Denominators, Proper Fractions Results, and No Simplifying (Fillable, Savable, Printable) ✎ Adding Two Proper Fractions with Similar Denominators, Proper Fractions Results, and No Simplifying (Fillable, Savable, Printable) ✎ Adding Two Proper Fractions with Similar Denominators, Proper Fractions Results, and Some Simplifying (Fillable, Savable, Printable) ✎ Adding Two Proper Fractions with Similar Denominators, Proper Fractions Result, and No Simplifying (Printable Only) Adding Two Proper Fractions with Similar Denominators, Proper Fractions Result, and All Simplifying (Printable Only) Adding Two Proper Fractions with Similar Denominators, Proper Fractions Result, and Some Simplifying (Printable Only)
  • Adding Two Proper Fractions with Similar Denominators and Mixed Fraction Results Adding Two Proper Fractions with Similar Denominators, Mixed Fractions Results, and No Simplifying (Fillable, Savable, Printable) ✎ Adding Two Proper Fractions with Similar Denominators, Mixed Fractions Results, and All Simplifying (Fillable, Savable, Printable) ✎ Adding Two Proper Fractions with Similar Denominators, Mixed Fractions Results, and Some Simplifying (Fillable, Savable, Printable) ✎ Adding Two Proper Fractions with Similar Denominators, Mixed Fractions Result, and No Simplifying (Printable Only) Adding Two Proper Fractions with Similar Denominators, Mixed Fractions Result, and All Simplifying (Printable Only) Adding Two Proper Fractions with Similar Denominators, Mixed Fractions Result, and Some Simplifying (Printable Only)
  • Adding Two Proper Fractions with Unlike Denominators and Proper Fraction Results Adding Two Proper Fractions with Unlike Denominators, Proper Fractions Results, and No Simplifying (Fillable, Savable, Printable) ✎ Adding Two Proper Fractions with Unlike Denominators, Proper Fractions Results, and All Simplifying (Fillable, Savable, Printable) ✎ Adding Two Proper Fractions with Unlike Denominators, Proper Fractions Results, and Some Simplifying (Fillable, Savable, Printable) ✎ Adding Two Proper Fractions with Unlike Denominators, Proper Fractions Result, and No Simplifying (Printable Only) Adding Two Proper Fractions with Unlike Denominators, Proper Fractions Result, and All Simplifying (Printable Only) Adding Two Proper Fractions with Unlike Denominators, Proper Fractions Result, and Some Simplifying (Printable Only)
  • Adding Two Proper Fractions with Unlike Denominators and Mixed Fraction Results Adding Two Proper Fractions with Unlike Denominators, Mixed Fractions Results, and No Simplifying (Fillable, Savable, Printable) ✎ Adding Two Proper Fractions with Unlike Denominators, Mixed Fractions Results, and All Simplifying (Fillable, Savable, Printable) ✎ Adding Two Proper Fractions with Unlike Denominators, Mixed Fractions Results, and Some Simplifying (Fillable, Savable, Printable) ✎ Adding Two Proper Fractions with Unlike Denominators, Mixed Fractions Result, and No Simplifying (Printable Only) Adding Two Proper Fractions with Unlike Denominators, Mixed Fractions Result, and All Simplifying (Printable Only) Adding Two Proper Fractions with Unlike Denominators, Mixed Fractions Result, and Some Simplifying (Printable Only)
  • Adding Proper and Improper Fractions with Equal Denominators Adding Proper and Improper Fractions with Equal Denominators and No Simplifying (Fillable, Savable, Printable) ✎ Adding Proper and Improper Fractions with Equal Denominators and All Simplifying (Fillable, Savable, Printable) ✎ Adding Proper and Improper Fractions with Equal Denominators and Some Simplifying (Fillable, Savable, Printable) ✎ Adding Proper and Improper Fractions with Equal Denominators and No Simplifying (Printable Only) Adding Proper and Improper Fractions with Equal Denominators and All Simplifying (Printable Only) Adding Proper and Improper Fractions with Equal Denominators and Some Simplifying (Printable Only)
  • Adding Proper and Improper Fractions with Similar Denominators Adding Proper and Improper Fractions with Similar Denominators and No Simplifying (Fillable, Savable, Printable) ✎ Adding Proper and Improper Fractions with Similar Denominators and All Simplifying (Fillable, Savable, Printable) ✎ Adding Proper and Improper Fractions with Similar Denominators and Some Simplifying (Fillable, Savable, Printable) ✎ Adding Proper and Improper Fractions with Similar Denominators and No Simplifying (Printable Only) Adding Proper and Improper Fractions with Similar Denominators and All Simplifying (Printable Only) Adding Proper and Improper Fractions with Similar Denominators and Some Simplifying (Printable Only)
  • Adding Proper and Improper Fractions with Unlike Denominators Adding Proper and Improper Fractions with Unlike Denominators and No Simplifying (Fillable, Savable, Printable) ✎ Adding Proper and Improper Fractions with Unlike Denominators and All Simplifying (Fillable, Savable, Printable) ✎ Adding Proper and Improper Fractions with Unlike Denominators and Some Simplifying (Fillable, Savable, Printable) ✎ Adding Proper and Improper Fractions with Unlike Denominators and No Simplifying (Printable Only) Adding Proper and Improper Fractions with Unlike Denominators and All Simplifying (Printable Only) Adding Proper and Improper Fractions with Unlike Denominators and Some Simplifying (Printable Only)

A common strategy to use when adding mixed fractions is to convert the mixed fractions to improper fractions, complete the addition, then switch back. Another strategy which requires a little less brainpower is to look at the whole numbers and fractions separately. Add the whole numbers first. Add the fractions second. If the resulting fraction is improper, then it needs to be converted to a mixed number. The whole number portion can be added to the original whole number portion.

  • Adding Two Mixed Fractions with Equal Denominators Adding Two Mixed Fractions with Equal Denominators and No Simplifying (Fillable, Savable, Printable) ✎ Adding Two Mixed Fractions with Equal Denominators and All Simplifying (Fillable, Savable, Printable) ✎ Adding Two Mixed Fractions with Equal Denominators and Some Simplifying (Fillable, Savable, Printable) ✎ Adding Two Mixed Fractions with Equal Denominators and No Simplifying (Printable Only) Adding Two Mixed Fractions with Equal Denominators and All Simplifying (Printable Only) Adding Two Mixed Fractions with Equal Denominators and Some Simplifying (Printable Only)
  • Adding Two Mixed Fractions with Similar Denominators Adding Two Mixed Fractions with Similar Denominators and No Simplifying (Fillable, Savable, Printable) ✎ Adding Two Mixed Fractions with Similar Denominators and All Simplifying (Fillable, Savable, Printable) ✎ Adding Two Mixed Fractions with Similar Denominators and Some Simplifying Adding Two Mixed Fractions with Similar Denominators and No Simplifying (Printable Only) Adding Two Mixed Fractions with Similar Denominators and All Simplifying (Printable Only) Adding Two Mixed Fractions with Similar Denominators and Some Simplifying (Printable Only)
  • Adding Two Mixed Fractions with Unlike Denominators Adding Two Mixed Fractions with Unlike Denominators and No Simplifying (Fillable, Savable, Printable) ✎ Adding Two Mixed Fractions with Unlike Denominators and All Simplifying (Fillable, Savable, Printable) ✎ Adding Two Mixed Fractions with Unlike Denominators and Some Simplifying (Fillable, Savable, Printable) ✎ Adding Two Mixed Fractions with Unlike Denominators and No Simplifying (Printable Only) Adding Two Mixed Fractions with Unlike Denominators and All Simplifying (Printable Only) Adding Two Mixed Fractions with Unlike Denominators and Some Simplifying (Printable Only)

Subtracting Fractions

problem solving questions for subtracting fractions

There isn't a lot of difference between adding and subtracting fractions. Both require a common denominator which requires some prerequisite knowledge. The only difference is the second and subsequent numerators are subtracted from the first one. There is a danger that you might end up with a negative number when subtracting fractions, so students might need to learn what it means in that case. When it comes to any concept in fractions, it is always a good idea to relate it to a familiar or easy-to-understand situation. For example, 7/8 - 3/4 = 1/8 could be given meaning in the context of a race. The first runner was 7/8 around the track when the second runner was 3/4 around the track. How far ahead was the first runner? (1/8 of the track).

  • Subtracting Two Proper Fractions with Equal Denominators and Proper Fraction Results Subtracting Two Proper Fractions with Equal Denominators, Proper Fractions Results, and No Simplifying (Fillable, Savable, Printable) ✎ Subtracting Two Proper Fractions with Equal Denominators, Proper Fractions Results, and All Simplifying (Fillable, Savable, Printable) ✎ Subtracting Two Proper Fractions with Equal Denominators, Proper Fractions Results, and Some Simplifying (Fillable, Savable, Printable) ✎ Subtracting Two Proper Fractions with Equal Denominators, Proper Fractions Results, and No Simplifying (Printable Only) Subtracting Two Proper Fractions with Equal Denominators, Proper Fractions Results, and All Simplifying (Printable Only) Subtracting Two Proper Fractions with Equal Denominators, Proper Fractions Results, and Some Simplifying (Printable Only)
  • Subtracting Two Proper Fractions with Similar Denominators and Proper Fraction Results Subtracting Two Proper Fractions with Similar Denominators, Proper Fractions Results, and No Simplifying (Fillable, Savable, Printable) ✎ Subtracting Two Proper Fractions with Similar Denominators, Proper Fractions Results, and All Simplifying (Fillable, Savable, Printable) ✎ Subtracting Two Proper Fractions with Similar Denominators, Proper Fractions Results, and Some Simplifying (Fillable, Savable, Printable) ✎ Subtracting Two Proper Fractions with Similar Denominators, Proper Fractions Results, and No Simplifying (Printable Only) Subtracting Two Proper Fractions with Similar Denominators, Proper Fractions Results, and All Simplifying (Printable Only) Subtracting Two Proper Fractions with Similar Denominators, Proper Fractions Results, and Some Simplifying (Printable Only)
  • Subtracting Two Proper Fractions with Unlike Denominators and Proper Fraction Results Subtracting Two Proper Fractions with Unlike Denominators, Proper Fractions Results, and No Simplifying (Fillable, Savable, Printable) ✎ Subtracting Two Proper Fractions with Unlike Denominators, Proper Fractions Results, and All Simplifying (Fillable, Savable, Printable) ✎ Subtracting Two Proper Fractions with Unlike Denominators, Proper Fractions Results, and Some Simplifying (Fillable, Savable, Printable) ✎ Subtracting Two Proper Fractions with Unlike Denominators, Proper Fractions Results, and No Simplifying (Printable Only) Subtracting Two Proper Fractions with Unlike Denominators, Proper Fractions Results, and All Simplifying (Printable Only) Subtracting Two Proper Fractions with Unlike Denominators, Proper Fractions Results, and Some Simplifying (Printable Only)
  • Subtracting Proper and Improper Fractions with Equal Denominators and Proper Fraction Results Subtracting Proper and Improper Fractions with Equal Denominators, Proper Fractions Results, and No Simplifying (Fillable, Savable, Printable) ✎ Subtracting Proper and Improper Fractions with Equal Denominators, Proper Fractions Results, and All Simplifying (Fillable, Savable, Printable) ✎ Subtracting Proper and Improper Fractions with Equal Denominators, Proper Fractions Results, and Some Simplifying (Fillable, Savable, Printable) ✎ Subtracting Proper and Improper Fractions with Equal Denominators, Proper Fractions Results, and No Simplifying (Printable Only) Subtracting Proper and Improper Fractions with Equal Denominators, Proper Fractions Results, and All Simplifying (Printable Only) Subtracting Proper and Improper Fractions with Equal Denominators, Proper Fractions Results, and Some Simplifying (Printable Only)
  • Subtracting Proper and Improper Fractions with Similar Denominators and Proper Fraction Results Subtracting Proper and Improper Fractions with Similar Denominators, Proper Fractions Results, and No Simplifying (Fillable, Savable, Printable) ✎ Subtracting Proper and Improper Fractions with Similar Denominators, Proper Fractions Results, and All Simplifying (Fillable, Savable, Printable) ✎ Subtracting Proper and Improper Fractions with Similar Denominators, Proper Fractions Results, and Some Simplifying (Fillable, Savable, Printable) ✎ Subtracting Proper and Improper Fractions with Similar Denominators, Proper Fractions Results, and No Simplifying (Printable Only) Subtracting Proper and Improper Fractions with Similar Denominators, Proper Fractions Results, and All Simplifying (Printable Only) Subtracting Proper and Improper Fractions with Similar Denominators, Proper Fractions Results, and Some Simplifying (Printable Only)
  • Subtracting Proper and Improper Fractions with Unlike Denominators and Proper Fraction Results Subtracting Proper and Improper Fractions with Unlike Denominators, Proper Fractions Results, and No Simplifying (Fillable, Savable, Printable) ✎ Subtracting Proper and Improper Fractions with Unlike Denominators, Proper Fractions Results, and All Simplifying (Fillable, Savable, Printable) ✎ Subtracting Proper and Improper Fractions with Unlike Denominators, Proper Fractions Results, and Some Simplifying (Fillable, Savable, Printable) ✎ Subtracting Proper and Improper Fractions with Unlike Denominators, Proper Fractions Results, and No Simplifying (Printable Only) Subtracting Proper and Improper Fractions with Unlike Denominators, Proper Fractions Results, and All Simplifying (Printable Only) Subtracting Proper and Improper Fractions with Unlike Denominators, Proper Fractions Results, and Some Simplifying (Printable Only)
  • Subtracting Proper and Improper Fractions with Equal Denominators and Mixed Fraction Results Subtracting Proper and Improper Fractions with Equal Denominators, Mixed Fractions Results, and No Simplifying (Fillable, Savable, Printable) ✎ Subtracting Proper and Improper Fractions with Equal Denominators, Mixed Fractions Results, and All Simplifying (Fillable, Savable, Printable) ✎ Subtracting Proper and Improper Fractions with Equal Denominators, Mixed Fractions Results, and Some Simplifying (Fillable, Savable, Printable) ✎ Subtracting Proper and Improper Fractions with Equal Denominators, Mixed Fractions Results, and No Simplifying (Printable Only) Subtracting Proper and Improper Fractions with Equal Denominators, Mixed Fractions Results, and All Simplifying (Printable Only) Subtracting Proper and Improper Fractions with Equal Denominators, Mixed Fractions Results, and Some Simplifying (Printable Only)
  • Subtracting Proper and Improper Fractions with Similar Denominators and Mixed Fraction Results Subtracting Proper and Improper Fractions with Similar Denominators, Mixed Fractions Results, and No Simplifying (Fillable, Savable, Printable) ✎ Subtracting Proper and Improper Fractions with Similar Denominators, Mixed Fractions Results, and All Simplifying (Fillable, Savable, Printable) ✎ Subtracting Proper and Improper Fractions with Similar Denominators, Mixed Fractions Results, and Some Simplifying (Fillable, Savable, Printable) ✎ Subtracting Proper and Improper Fractions with Similar Denominators, Mixed Fractions Results, and No Simplifying (Printable Only) Subtracting Proper and Improper Fractions with Similar Denominators, Mixed Fractions Results, and All Simplifying (Printable Only) Subtracting Proper and Improper Fractions with Similar Denominators, Mixed Fractions Results, and Some Simplifying (Printable Only)
  • Subtracting Proper and Improper Fractions with Unlike Denominators and Mixed Fraction Results Subtracting Proper and Improper Fractions with Unlike Denominators, Mixed Fractions Results, and No Simplifying (Fillable, Savable, Printable) ✎ Subtracting Proper and Improper Fractions with Unlike Denominators, Mixed Fractions Results, and All Simplifying (Fillable, Savable, Printable) ✎ Subtracting Proper and Improper Fractions with Unlike Denominators, Mixed Fractions Results, and Some Simplifying (Fillable, Savable, Printable) ✎ Subtracting Proper and Improper Fractions with Unlike Denominators, Mixed Fractions Results, and No Simplifying (Printable Only) Subtracting Proper and Improper Fractions with Unlike Denominators, Mixed Fractions Results, and All Simplifying (Printable Only) Subtracting Proper and Improper Fractions with Unlike Denominators, Mixed Fractions Results, and Some Simplifying (Printable Only)
  • Subtracting Mixed Fractions with Equal Denominators Subtracting Mixed Fractions with Equal Denominators, and No Simplifying (Fillable, Savable, Printable) ✎ Subtracting Mixed Fractions with Equal Denominators, and All Simplifying (Fillable, Savable, Printable) ✎ Subtracting Mixed Fractions with Equal Denominators, and Some Simplifying (Fillable, Savable, Printable) ✎ Subtracting Mixed Fractions with Equal Denominators, and No Simplifying (Printable Only) Subtracting Mixed Fractions with Equal Denominators, and All Simplifying (Printable Only) Subtracting Mixed Fractions with Equal Denominators, and Some Simplifying (Printable Only)
  • Subtracting Mixed Fractions with Similar Denominators Subtracting Mixed Fractions with Similar Denominators, and No Simplifying (Fillable, Savable, Printable) ✎ Subtracting Mixed Fractions with Similar Denominators, and All Simplifying (Fillable, Savable, Printable) ✎ Subtracting Mixed Fractions with Similar Denominators, and Some Simplifying (Fillable, Savable, Printable) ✎ Subtracting Mixed Fractions with Similar Denominators, and No Simplifying (Printable Only) Subtracting Mixed Fractions with Similar Denominators, and All Simplifying (Printable Only) Subtracting Mixed Fractions with Similar Denominators, and Some Simplifying (Printable Only)
  • Subtracting Mixed Fractions with Unlike Denominators Subtracting Mixed Fractions with Unlike Denominators, and No Simplifying (Fillable, Savable, Printable) ✎ Subtracting Mixed Fractions with Unlike Denominators, and All Simplifying (Fillable, Savable, Printable) ✎ Subtracting Mixed Fractions with Unlike Denominators, and Some Simplifying (Fillable, Savable, Printable) ✎ Subtracting Mixed Fractions with Unlike Denominators, and No Simplifying (Printable Only) Subtracting Mixed Fractions with Unlike Denominators, and All Simplifying (Printable Only) Subtracting Mixed Fractions with Unlike Denominators, and Some Simplifying (Printable Only)

Adding and Subtracting Fractions

problem solving questions for subtracting fractions

Mixing up the signs on operations with fractions worksheets makes students pay more attention to what they are doing and allows for a good test of their skills in more than one operation.

  • Adding and Subtracting Proper and Improper Fractions Adding and Subtracting Proper and Improper Fractions with Equal Denominators and Some Simplifying (Fillable, Savable, Printable) ✎ Adding and Subtracting Proper and Improper Fractions with Similar Denominators and Some Simplifying (Fillable, Savable, Printable) ✎ Adding and Subtracting Proper and Improper Fractions with Unlike Denominators and Some Simplifying (Fillable, Savable, Printable) ✎ Adding and Subtracting Proper and Improper Fractions with Equal Denominators and Some Simplifying (Printable Only) Adding and Subtracting Proper and Improper Fractions with Similar Denominators and Some Simplifying (Printable Only) Adding and Subtracting Proper and Improper Fractions with Unlike Denominators and Some Simplifying (Printable Only)
  • Adding and Subtracting Mixed Fractions Adding and Subtracting Mixed Fractions with Equal Denominators and Some Simplifying (Fillable, Savable, Printable) ✎ Adding and Subtracting Mixed Fractions with Similar Denominators and Some Simplifying (Fillable, Savable, Printable) ✎ Adding and Subtracting Mixed Fractions with Unlike Denominators and Some Simplifying (Fillable, Savable, Printable) ✎ Adding and Subtracting Mixed Fractions with Equal Denominators and Some Simplifying (Printable Only) Adding and Subtracting Mixed Fractions with Similar Denominators and Some Simplifying (Printable Only) Adding and Subtracting Mixed Fractions with Unlike Denominators and Some Simplifying (Printable Only) Adding/Subtracting Three Fractions/Mixed Fractions

All Operations Fractions Worksheets

problem solving questions for subtracting fractions

  • All Operations with Two Proper Fractions with Equal Denominators and Proper Fraction Results All Operations with Two Proper Fractions with Equal Denominators, Proper Fractions Results and No Simplifying (Fillable, Savable, Printable) ✎ All Operations with Two Proper Fractions with Equal Denominators, Proper Fractions Results and All Simplifying (Fillable, Savable, Printable) ✎ All Operations with Two Proper Fractions with Equal Denominators, Proper Fractions Results and Some Simplifying (Fillable, Savable, Printable) ✎ All Operations with Two Proper Fractions with Equal Denominators, Proper Fractions Results and No Simplifying (Printable Only) All Operations with Two Proper Fractions with Equal Denominators, Proper Fractions Results and All Simplifying (Printable Only) All Operations with Two Proper Fractions with Equal Denominators, Proper Fractions Results and Some Simplifying (Printable Only)
  • All Operations with Two Proper Fractions with Similar Denominators and Proper Fraction Results All Operations with Two Proper Fractions with Similar Denominators, Proper Fractions Results and No Simplifying (Fillable, Savable, Printable) ✎ All Operations with Two Proper Fractions with Similar Denominators, Proper Fractions Results and All Simplifying (Fillable, Savable, Printable) ✎ All Operations with Two Proper Fractions with Similar Denominators, Proper Fractions Results and Some Simplifying (Fillable, Savable, Printable) ✎ All Operations with Two Proper Fractions with Similar Denominators, Proper Fractions Results and No Simplifying (Printable Only) All Operations with Two Proper Fractions with Similar Denominators, Proper Fractions Results and All Simplifying (Printable Only) All Operations with Two Proper Fractions with Similar Denominators, Proper Fractions Results and Some Simplifying (Printable Only)
  • All Operations with Two Proper Fractions with Unlike Denominators and Proper Fraction Results All Operations with Two Proper Fractions with Unlike Denominators, Proper Fractions Results and No Simplifying (Fillable, Savable, Printable) ✎ All Operations with Two Proper Fractions with Unlike Denominators, Proper Fractions Results and All Simplifying (Fillable, Savable, Printable) ✎ All Operations with Two Proper Fractions with Unlike Denominators, Proper Fractions Results and Some Simplifying (Fillable, Savable, Printable) ✎ All Operations with Two Proper Fractions with Unlike Denominators, Proper Fractions Results and No Simplifying (Printable Only) All Operations with Two Proper Fractions with Unlike Denominators, Proper Fractions Results and All Simplifying (Printable Only) All Operations with Two Proper Fractions with Unlike Denominators, Mixed Fractions Results and Some Simplifying (Printable Only)
  • All Operations with Proper and Improper Fractions with Equal Denominators All Operations with Proper and Improper Fractions with Equal Denominators and No Simplifying (Fillable, Savable, Printable) ✎ All Operations with Proper and Improper Fractions with Equal Denominators and All Simplifying (Fillable, Savable, Printable) ✎ All Operations with Proper and Improper Fractions with Equal Denominators and Some Simplifying (Fillable, Savable, Printable) ✎ All Operations with Proper and Improper Fractions with Equal Denominators and No Simplifying (Printable Only) All Operations with Proper and Improper Fractions with Equal Denominators and All Simplifying (Printable Only) All Operations with Proper and Improper Fractions with Equal Denominators and Some Simplifying (Printable Only)
  • All Operations with Proper and Improper Fractions with Similar Denominators All Operations with Proper and Improper Fractions with Similar Denominators and No Simplifying (Fillable, Savable, Printable) ✎ All Operations with Proper and Improper Fractions with Similar Denominators and All Simplifying (Fillable, Savable, Printable) ✎ All Operations with Proper and Improper Fractions with Similar Denominators and Some Simplifying (Fillable, Savable, Printable) ✎ All Operations with Proper and Improper Fractions with Similar Denominators and No Simplifying (Printable Only) All Operations with Proper and Improper Fractions with Similar Denominators and All Simplifying (Printable Only) All Operations with Proper and Improper Fractions with Similar Denominators and Some Simplifying (Printable Only)
  • All Operations with Proper and Improper Fractions with Unlike Denominators All Operations with Proper and Improper Fractions with Unlike Denominators and No Simplifying (Fillable, Savable, Printable) ✎ All Operations with Proper and Improper Fractions with Unlike Denominators and All Simplifying (Fillable, Savable, Printable) ✎ All Operations with Proper and Improper Fractions with Unlike Denominators and Some Simplifying (Fillable, Savable, Printable) ✎ All Operations with Proper and Improper Fractions with Unlike Denominators and No Simplifying (Printable Only) All Operations with Proper and Improper Fractions with Unlike Denominators and All Simplifying (Printable Only) All Operations with Proper and Improper Fractions with Unlike Denominators and Some Simplifying (Printable Only)
  • All Operations with Two Mixed Fractions with Equal Denominators All Operations with Two Mixed Fractions with Equal Denominators and No Simplifying (Fillable, Savable, Printable) ✎ All Operations with Two Mixed Fractions with Equal Denominators and All Simplifying (Fillable, Savable, Printable) ✎ All Operations with Two Mixed Fractions with Equal Denominators and Some Simplifying (Fillable, Savable, Printable) ✎ All Operations with Two Mixed Fractions with Equal Denominators and No Simplifying (Printable Only) All Operations with Two Mixed Fractions with Equal Denominators and All Simplifying (Printable Only) All Operations with Two Mixed Fractions with Equal Denominators and Some Simplifying (Printable Only)
  • All Operations with Two Mixed Fractions with Similar Denominators All Operations with Two Mixed Fractions with Similar Denominators and No Simplifying (Fillable, Savable, Printable) ✎ All Operations with Two Mixed Fractions with Similar Denominators and All Simplifying (Fillable, Savable, Printable) ✎ All Operations with Two Mixed Fractions with Similar Denominators and Some Simplifying (Fillable, Savable, Printable) ✎ All Operations with Two Mixed Fractions with Similar Denominators and No Simplifying (Printable Only) All Operations with Two Mixed Fractions with Similar Denominators and All Simplifying (Printable Only) All Operations with Two Mixed Fractions with Similar Denominators and Some Simplifying (Printable Only)
  • All Operations with Two Mixed Fractions with Unlike Denominators All Operations with Two Mixed Fractions with Unlike Denominators and No Simplifying (Fillable, Savable, Printable) ✎ All Operations with Two Mixed Fractions with Unlike Denominators and All Simplifying (Fillable, Savable, Printable) ✎ All Operations with Two Mixed Fractions with Unlike Denominators and Some Simplifying (Fillable, Savable, Printable) ✎ All Operations with Two Mixed Fractions with Unlike Denominators and No Simplifying (Printable Only) All Operations with Two Mixed Fractions with Unlike Denominators and All Simplifying (Printable Only) All Operations with Two Mixed Fractions with Unlike Denominators and Some Simplifying (Printable Only)
  • All Operations with 3 Fractions All Operations with Three Fractions Including Some Improper Fractions All Operations with Three Fractions Including Some Negative and Some Improper Fractions

Operations with Negative Fractions Worksheets

problem solving questions for subtracting fractions

Although some of these worksheets are single operations, it should be helpful to have all of these in the same location. There are some special considerations when completing operations with negative fractions. It is usually very helpful to change any mixed numbers to an improper fraction before proceeding. It is important to pay attention to the signs and know the rules for multiplying positives and negatives (++ = +, +- = -, -+ = - and -- = +).

  • Adding with Negative Fractions Adding Negative Proper Fractions with Unlike Denominators Up to Sixths, Proper Fractions Results and Some Simplifying (Fillable, Savable, Printable) ✎ Adding Negative Proper Fractions with Unlike Denominators Up to Twelfths, Proper Fractions Results and Some Simplifying (Fillable, Savable, Printable) ✎ Adding Negative Mixed Fractions with Unlike Denominators Up to Sixths, Proper Fractions Results and No Simplifying (Fillable, Savable, Printable) ✎ Adding Negative Mixed Fractions with Unlike Denominators Up to Twelfths, Proper Fractions Results and No Simplifying (Fillable, Savable, Printable) ✎ Adding Negative Proper Fractions with Denominators Up to Sixths, Proper Fraction Results and Some Simplifying (Printable Only) Adding Negative Proper Fractions with Denominators Up to Twelfths, Proper Fraction Results and Some Simplifying (Printable Only) Adding Negative Mixed Fractions with Denominators Up to Sixths and Some Simplifying (Printable Only) Adding Negative Mixed Fractions with Denominators Up to Twelfths and Some Simplifying (Printable Only)
  • Subtracting with Negative Fractions Subtracting Negative Proper Fractions with Unlike Denominators Up to Sixths, Proper Fractions Results and Some Simplifying (Fillable, Savable, Printable) ✎ Subtracting Negative Proper Fractions with Unlike Denominators Up to Twelfths, Proper Fractions Results and Some Simplifying (Fillable, Savable, Printable) ✎ Subtracting Negative Mixed Fractions with Unlike Denominators Up to Sixths, Mixed Fractions Results and No Simplifying (Fillable, Savable, Printable) ✎ Subtracting Negative Mixed Fractions with Unlike Denominators Up to Twelfths, Mixed Fractions Results and No Simplifying (Fillable, Savable, Printable) ✎ Subtracting Negative Proper Fractions with Denominators Up to Sixths, Proper Fraction Results and Some Simplifying (Printable Only) Subtracting Negative Proper Fractions with Denominators Up to Twelfths, Proper Fraction Results and Some Simplifying (Printable Only) Subtracting Negative Mixed Fractions with Denominators Up to Sixths and Some Simplifying (Printable Only) Subtracting Negative Mixed Fractions with Denominators Up to Twelfths and Some Simplifying (Printable Only)
  • Multiplying with Negative Fractions Multiplying Negative Proper Fractions with Denominators Up to Sixths, Proper Fractions Results and Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying Negative Proper Fractions with Denominators Up to Twelfths, Proper Fractions Results and Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying Negative Mixed Fractions with Denominators Up to Sixths, Proper Fractions Results and Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying Negative Mixed Fractions with Denominators Up to Twelfths, Proper Fractions Results and Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying Negative Proper Fractions with Denominators Up to Sixths, Proper Fraction Results and Some Simplifying (Printable Only) Multiplying Negative Proper Fractions with Denominators Up to Twelfths, Proper Fraction Results and Some Simplifying (Printable Only) Multiplying Negative Mixed Fractions with Denominators Up to Sixths and Some Simplifying (Printable Only) Multiplying Negative Mixed Fractions with Denominators Up to Twelfths and Some Simplifying (Printable Only)
  • Dividing with Negative Fractions Dividing Negative Proper Fractions with Denominators Up to Sixths, Mixed Fractions Results and Some Simplifying (Fillable, Savable, Printable) ✎ Dividing Negative Proper Fractions with Denominators Up to Twelfths, Mixed Fractions Results and Some Simplifying (Fillable, Savable, Printable) ✎ Dividing Negative Mixed Fractions with Denominators Up to Twelfths, Mixed Fractions Results and No Simplifying (Fillable, Savable, Printable) ✎ Dividing Negative Mixed Fractions with Denominators Up to Twelfths, Mixed Fractions Results and No Simplifying (Fillable, Savable, Printable) ✎ Dividing Negative Proper Fractions with Denominators Up to Sixths, Proper Fraction Results and Some Simplifying (Printable Only) Dividing Negative Proper Fractions with Denominators Up to Twelfths, Proper Fraction Results and Some Simplifying (Printable Only) Dividing Negative Mixed Fractions with Denominators Up to Sixths and Some Simplifying (Printable Only) Dividing Negative Mixed Fractions with Denominators Up to Twelfths and Some Simplifying (Printable Only)

Order of Operations with Fractions Worksheets

problem solving questions for subtracting fractions

The order of operations worksheets in this section actually reside on the Order of Operations page, but they are included here for your convenience.

  • Order of Operations with Fractions 2-Step Order of Operations with Fractions 3-Step Order of Operations with Fractions 4-Step Order of Operations with Fractions 5-Step Order of Operations with Fractions 6-Step Order of Operations with Fractions
  • Order of Operations with Fractions (No Exponents) 2-Step Order of Operations with Fractions (No Exponents) 3-Step Order of Operations with Fractions (No Exponents) 4-Step Order of Operations with Fractions (No Exponents) 5-Step Order of Operations with Fractions (No Exponents) 6-Step Order of Operations with Fractions (No Exponents)
  • Order of Operations with Positive and Negative Fractions 2-Step Order of Operations with Positive & Negative Fractions 3-Step Order of Operations with Positive & Negative Fractions 4-Step Order of Operations with Positive & Negative Fractions 5-Step Order of Operations with Positive & Negative Fractions 6-Step Order of Operations with Positive & Negative Fractions

Copyright © 2005-2024 Math-Drills.com You may use the math worksheets on this website according to our Terms of Use to help students learn math.

Free Printable Subtracting Fractions worksheets

Subtracting Fractions: Discover a comprehensive collection of free printable math worksheets for teachers and students to enhance their understanding of subtracting fractions concepts.

quizizz-hero

Tìm hiểu bài tập theo lớp

  • kindergarten

Khám phá bảng tính theo chủ đề

  • Social studies
  • Social emotional
  • Foreign language
  • Reading & Writing

Explore printable Subtracting Fractions worksheets

Subtracting Fractions worksheets are an essential tool for teachers looking to help their students master the concept of fractions in math. These worksheets provide a variety of exercises and problems that challenge students to add and subtract fractions with different denominators, reinforcing their understanding of the underlying principles. Teachers can easily incorporate these worksheets into their lesson plans, using them as in-class activities, homework assignments, or even as assessment tools. By utilizing Subtracting Fractions worksheets, educators can ensure that their students are getting the practice they need to become confident and proficient in working with fractions, ultimately setting them up for success in more advanced math topics.

Quizizz offers a comprehensive platform for teachers to create engaging and interactive Subtracting Fractions worksheets, as well as other math-related content. With Quizizz, educators can access a vast library of pre-made quizzes and worksheets, or create their own customized resources to suit the specific needs of their students. In addition to worksheets, Quizizz also provides features such as gamified quizzes, flashcards, and performance tracking, allowing teachers to monitor student progress and identify areas where additional support may be needed. By incorporating Quizizz into their teaching strategies, educators can provide a dynamic and effective learning experience for their students, helping them to excel in math and develop a strong foundation in adding and subtracting fractions.

Smartick

Word Problems with Fractions

Today we are going to look at some examples of word problems with fractions.

Although they may seem more difficult, in reality, word problems involving fractions are just as easy as those involving whole numbers. The only thing we have to do is:

  • Read the problem carefully.
  • Think about what it is asking us to do.
  • Think about the information we need.
  • Simplify, if necessary.
  • Think about whether our solution makes sense (in order to check it).

As you can see, the only difference in fraction word problems is step 5 (simplify) .

There are some word problems which, depending on the information provided, we should express as a fraction.  For example:

word problems with fractions

In my fruit basket, there are 13 pieces of fruit, 5 of which are apples. 

How can we express the number of apples as a fraction?

word problems with fractions

5 – The number of apples (5) corresponds to the numerator (the number which expresses the number of parts that we wish to represent).

13 – The total number of fruits (13) corresponds to the denominator (the number which expresses the number of total possible parts).

The solution to this problem is an irreducible fraction (a fraction which cannot be simplified). Therefore, there is nothing left to do.

Word problems with fractions: involving two fractions

In these problems, we should remember how to carry out operations with fractions.

Carefully read the following problem and the steps we have taken to solve it:

word problems with fractions

What fraction of the payment has Maria spent?

We find the common denominator:

word problems with fractions

We calculate:

word problems with fractions

Word problems with fractions: involving a fraction and a whole number

Finally, we are going to look at an example of a word problem with a fraction and a whole number. Now we will have to convert all the information into a fraction with the same denominator (as we did in the example above) in order to calculate

Captura

  We convert 1 into a fraction with the same denominator:

Captura2

What do you think of this post? Do you see how easy it is to solve word problems with fractions?

To keep learning, try Smartick’s free trial.

Learn More:

  • Understand What a Fraction Is and When It Is Used
  • Fraction Word Problems: Addition, Subtraction, and Mixed Numbers
  • Learn and Practice How to Subtract or Add Fractions
  • Learn How to Subtract Fractions
  • Review and Practice the Two Methods of Dividing Fractions
  • 15 fun minutes a day
  • Adapts to your child’s level
  • Millions of students since 2009

problem solving questions for subtracting fractions

  • Recent Posts

Smartick

  • The Language of Functions and Graphs - 07/01/2024
  • Educational Technology: The Christodoulou Test - 05/06/2024
  • Multiplication Activities in Smartick - 04/09/2024

Add a new public comment to the blog: Cancel reply

The comments that you write here are moderated and can be seen by other users. For private inquiries please write to [email protected]

Your personal details will not be shown publicly.

I have read and accepted the Privacy and Cookies Policy

40 Comments

I loved the word problem

Thanks for your help

it simplifies the teaching and learning process

Thanks for the explanation… really grateful 🙏

Thank you for such good explanations, it helped me a lot

It is really good it helped me improve my math a lot.

same it helps me in my math too

Wow, it really helps a lot

Good exercises

Interesting

wow it worked

Hi can you not show the answer till the bottom of the page or your giving away the answer so if you solved number one problem the number one aware to the question will be there at the bottom of the page because it is way to easy if it is right there

I like that you are doing for as Thank you

I really want to be part of this

wow, this help me a lot

A big help for my kids lesson

Thank for helping me

Thank you for all the homework you have given us. God bless you

Thank you for this problems that involved fractions

Hey I will use this in my game☺

Please help me with my math homework

Hi Letlhogonolo,

Thank you very much for your comment. If you want to learn more content like this and practice elementary school math, just sign up at Smartick . You have a free trial period with no strings attached. If you have any additional questions or doubts you can write to my colleagues of the pedagogical team at [email protected] .

Best regards!

I like it… but you can level up please 🙄

Roll two dices, the first dice is the numerator, the second is the denominator, this is the first fraction. Roll both dices again and repeat the process to generate the second fraction. Write a division story problem that incorporates these two fractions.

Seems easy of the examples but when I have fraction word promblems in front of me then its still hard for me to figure it out.The examples on this site still is helpful.I will use the site that you give on here to get further practice.Thank you for the examples on here

Interesting and very helpful. I’m going to continue using this site and tell others about it too.

I really like it

Hey I am in grade five and it is super helpful for my exams thanks and maybe if you could make more it would be appriciated thx 🙂

Good efforts

i kinda like it pls write some more problems

I think it was really good how you are helping fellow students! But I think you can improve if there were more problems for solving! Thanks

Cool, it helps a lot.

it is helpfull

  • International
  • Education Jobs
  • Schools directory
  • Resources Education Jobs Schools directory News Search

Adding and Subtracting Fraction Word Problems

Adding and Subtracting Fraction Word Problems

Subject: Mathematics

Age range: 7-11

Resource type: Worksheet/Activity

evh4

Last updated

16 June 2015

  • Share through email
  • Share through twitter
  • Share through linkedin
  • Share through facebook
  • Share through pinterest

docx, 18.11 KB

Creative Commons "Sharealike"

Your rating is required to reflect your happiness.

It's good to leave some feedback.

Something went wrong, please try again later.

Perfect for my year 7. Thank you for sharing.

Empty reply does not make any sense for the end user

excellent - just what I was looking for

roger_matthews

Helpful sheet for practicing wordy fraction questions. Answers can sometimes be simplified further.

Report this resource to let us know if it violates our terms and conditions. Our customer service team will review your report and will be in touch.

Not quite what you were looking for? Search by keyword to find the right resource:

Corbettmaths

Fraction of Amounts Practice Questions

Click here for questions, click here for answers.

GCSE Revision Cards

problem solving questions for subtracting fractions

5-a-day Workbooks

problem solving questions for subtracting fractions

Primary Study Cards

problem solving questions for subtracting fractions

Privacy Policy

Terms and Conditions

Corbettmaths © 2012 – 2024

Home

Reading & Math for K-5

  • Kindergarten
  • Learning numbers
  • Comparing numbers
  • Place Value
  • Roman numerals
  • Subtraction
  • Multiplication
  • Order of operations
  • Drills & practice
  • Measurement
  • Factoring & prime factors
  • Proportions
  • Shape & geometry
  • Data & graphing
  • Word problems
  • Children's stories
  • Leveled stories
  • Sight words
  • Sentences & passages
  • Context clues
  • Cause & effect
  • Compare & contrast
  • Fact vs. fiction
  • Fact vs. opinion
  • Main idea & details
  • Story elements
  • Conclusions & inferences
  • Sounds & phonics
  • Words & vocabulary
  • Reading comprehension
  • Early writing
  • Numbers & counting
  • Simple math
  • Social skills
  • Other activities
  • Dolch sight words
  • Fry sight words
  • Multiple meaning words
  • Prefixes & suffixes
  • Vocabulary cards
  • Other parts of speech
  • Punctuation
  • Capitalization
  • Narrative writing
  • Opinion writing
  • Informative writing
  • Cursive alphabet
  • Cursive letters
  • Cursive letter joins
  • Cursive words
  • Cursive sentences
  • Cursive passages
  • Grammar & Writing

Breadcrumbs

  • Word Problems
  • Fractions - 4 Ops

Math Workbooks for Grade 5

Download & Print From only $2.60

Fractions: mixed operations

Fraction word problems with the 4 operations.

These word problems involve the 4 basic operations ( addition, subtraction, multiplication and division ) on fractions .  Mixing word problems encourages students to read and think about the questions, rather than simply recognizing a pattern to the solutions.  

problem solving questions for subtracting fractions

These worksheets are available to members only.

Join K5 to save time, skip ads and access more content. Learn More

More word problem worksheets

Explore all of our math word problem worksheets , from kindergarten through grade 5.

What is K5?

K5 Learning offers free worksheets , flashcards  and inexpensive  workbooks  for kids in kindergarten to grade 5. Become a member  to access additional content and skip ads.

Our members helped us give away millions of worksheets last year.

We provide free educational materials to parents and teachers in over 100 countries. If you can, please consider purchasing a membership ($24/year) to support our efforts.

Members skip ads and access exclusive features.

Learn about member benefits

This content is available to members only.

IMAGES

  1. Subtracting Fractions Worksheets

    problem solving questions for subtracting fractions

  2. Mastery in maths

    problem solving questions for subtracting fractions

  3. Adding and Subtracting Fractions Worksheets with Answer Key

    problem solving questions for subtracting fractions

  4. How to Subtract Fractions in 3 Easy Steps

    problem solving questions for subtracting fractions

  5. Subtracting Fractions

    problem solving questions for subtracting fractions

  6. Subtracting Fractions Worksheets

    problem solving questions for subtracting fractions

VIDEO

  1. Simplifying an expression by adding and subtracting

  2. Subtraction Answers

  3. Steps to subtract fractions unlike denominators

  4. How to Add and Subtract Fractions

  5. Let’s Practice a few EASY Fraction Problems……

  6. Fraction Word Problems (Subtracting Mixed Numbers!)

COMMENTS

  1. Subtracting Fractions Word Problems Worksheets

    Thumb through our printable subtracting fractions word problems worksheets and discover a treasure of fun, realistic scenarios. Our pdf prepping tools, with included answer keys, are well-chosen for grade 3 through grade 6 students. Task young learners with reading, understanding, and solving an array of fraction subtraction word problems.

  2. Subtracting fractions word problems

    This fraction word problem requires subtraction. The fact that the problem is asking how much more black pepper the recipe needs is an indication that 3/4 is bigger than 1/4. However, it does not hurt to check! 3/4 - 1/4 = 2/4 = 1/2. The black pepper is 1/2 of a teaspoon more than the red pepper.

  3. Fraction Word Problems

    Common Core State Standards. How does this relate to 4 th grade math to 6 th grade math?. Grade 4: Number and Operations—Fractions (4.NF.B.3d) Solve word problems involving addition and subtraction of fractions referring to the same whole and having like denominators, e.g., by using visual fraction models and equations to represent the problem.

  4. Add & subtract fractions word problems

    Like & unlike denominators. Below are our grade 5 math word problem worksheet on adding and subtracting fractions. The problems include both like and unlike denominators, and may include more than two terms. Worksheet #1 Worksheet #2 Worksheet #3 Worksheet #4. Worksheet #5 Worksheet #6.

  5. Solving Word Problems by Adding and Subtracting Fractions and Mixed

    Answer: The carpenter needs to cut four and seven-twelfths feet of wood. Summary: In this lesson we learned how to solve word problems involving addition and subtraction of fractions and mixed numbers. We used the following skills to solve these problems: Add fractions with like denominators. Subtract fractions with like denominators.

  6. Fraction Worksheets

    Fractions - Subtraction. Worksheet. Example. Fractions (Same Denominator) 15 − 25. Unit Fractions. 13 − 19. Easy Proper Fractions. 38 − 27. Harder Proper Fractions. 712 − 1525. Easy Mixed Fractions. 1 23 − 2 14. Harder Mixed Fractions. 1 79 − 3 511. Easy Improper Fractions. 59 − 74. Harder Improper Fractions. 3315 − 4311. top>

  7. Subtracting Fractions Worksheets

    Subtracting Fractions Worksheets. Explore this compilation of subtracting fractions worksheets to sail smoothly through the steps of fraction subtraction and mixed-number subtraction! Encompassing diverse exercises ranging from subtracting unit fractions to proper or improper fractions to mixed numbers with same or different denominators to ...

  8. Free fraction worksheets: addition, subtraction, multiplication, and

    Add & subtract 2 unlike fractions (for 5th grade) Add & subtract 3 unlike fractions (for 6th grade) Multiply a fraction by a whole number (for 5th grade) Multiply fractions and mixed numbers (mixed problems, for 5th grade) Division of fractions, special case (answers are whole numbers, for 5th grade) Divide by fractions (mixed problems, for 6th ...

  9. Fraction Word Problems Worksheets

    Presented here are the fraction pdf worksheets based on real-life scenarios. Read the basic fraction word problems, write the correct fraction and reduce your answer to the simplest form. Download the set. Represent and Simplify the Fractions: Type 2. Before representing in fraction, children should perform addition or subtraction to solve ...

  10. Subtracting Fractions

    Go through the below steps to subtract the unlike fractions. Step 1: Determine the LCM of the denominator values. Step 2: Convert the denominator to the LCM value by multiplying the numerator and denominator using the same number. Step 3: Subtract the numerators, once the fractions have the same denominator values.

  11. Subtracting Fractions Questions

    Subtracting fractions questions given here cover all types of fractions including like, unlike and mixed.These involve both numerical and word problems of subtracting fractions. Practising various questions on subtracting fractions will enhance your understanding of performing various arithmetic operations on fractions.

  12. Subtracting Fractions

    There are 3 simple steps to subtract fractions. Step 1. Make sure the bottom numbers (the denominators) are the same. Step 2. Subtract the top numbers (the numerators). Put the answer over the same denominator. Step 3. Simplify the fraction (if needed). Step 1.

  13. Subtracting Fractions Word Problems

    The steps for subtracting fractions are listed below: Step 1: Identify whether the given fractions have the same denominator or different denominators. Step 2: In the case of like fractions, subtract the numerators and write their difference over the common denominator. For example, 5 7 − 2 7 = 5 − 2 7 = 3 7 5 7 − 2 7 = 5 − 2 7 = 3 7.

  14. Fractions Worksheets

    Cut out the fraction circles and segments of one copy and leave the other copy intact. To add 1/3 + 1/2, for example, place a 1/3 segment and a 1/2 segment into a circle and hold it over various fractions on the intact copy to see what 1/2 + 1/3 is equivalent to. 5/6 or 10/12 should work. Small Fraction Circles.

  15. Free Printable Subtracting Fractions worksheets

    Subtracting Fractions worksheets are an essential tool for teachers looking to help their students master the concept of fractions in math. These worksheets provide a variety of exercises and problems that challenge students to add and subtract fractions with different denominators, reinforcing their understanding of the underlying principles.

  16. Subtracting fractions with unlike denominators (practice)

    Adding fractions with unlike denominators. Add fractions with unlike denominators. Subtracting fractions with unlike denominators introduction. Subtracting fractions with unlike denominators. Subtracting fractions with unlike denominators. Adding and subtracting 3 fractions. Solving for the missing fraction. Add and subtract fractions.

  17. Add & Subtract Fractions Worksheets for Grade 5

    Subtracting unlike fractions: Subtract unlike fractions: 4/5 - 2/3 = Subtract unlike fractions (harder) 17/25 - 2/3 = Subtract mixed numbers (unlike denominators) 16 8/9 - 5 1/8 = Word problems: Add & subtract fractions word problems: Word problems: Add & subtract mixed numbers: Word problems

  18. Adding & subtracting fractions word problems

    Word problem worksheets: Addition & subtraction of fractions. Below are three versions of our grade 4 math worksheet on adding and subtracting fractions and mixed numbers. All fractions have like denominators. Some problems will include irrelevant data so that students have to read and understand the questions, rather than simply recognizing a pattern to the solutions.

  19. Add and subtract fractions word problems (practice)

    Course: 5th grade > Unit 4. Lesson 5: Adding and subtracting fractions with unlike denominators word problems. Adding fractions word problem: paint. Subtracting fractions word problem: tomatoes. Add and subtract fractions word problems. Add and subtract fractions: FAQ.

  20. Word Problems with Fractions

    5 - The number of apples (5) corresponds to the numerator (the number which expresses the number of parts that we wish to represent). 13 - The total number of fruits (13) corresponds to the denominator (the number which expresses the number of total possible parts). The solution to this problem is an irreducible fraction (a fraction which ...

  21. Adding and Subtracting Fraction Word Problems

    Subject: Mathematics. Age range: 7-11. Resource type: Worksheet/Activity. File previews. docx, 18.11 KB. Here are some word-based questions for solving problems involving the addition and subtraction of fractions. Feedback greatly appreciated! Creative Commons "Sharealike". See more.

  22. Fraction of Amounts Practice Questions

    Next: Fractions - Finding Original Practice Questions GCSE Revision Cards. 5-a-day Workbooks

  23. Fractions: mixed operations word problems

    These word problems involve the 4 basic operations (addition, subtraction, multiplication and division) on fractions. Mixing word problems encourages students to read and think about the questions, rather than simply recognizing a pattern to the solutions. Worksheet #1 Worksheet #2 Worksheet #3 Worksheet #4. Worksheet #5 Worksheet #6.